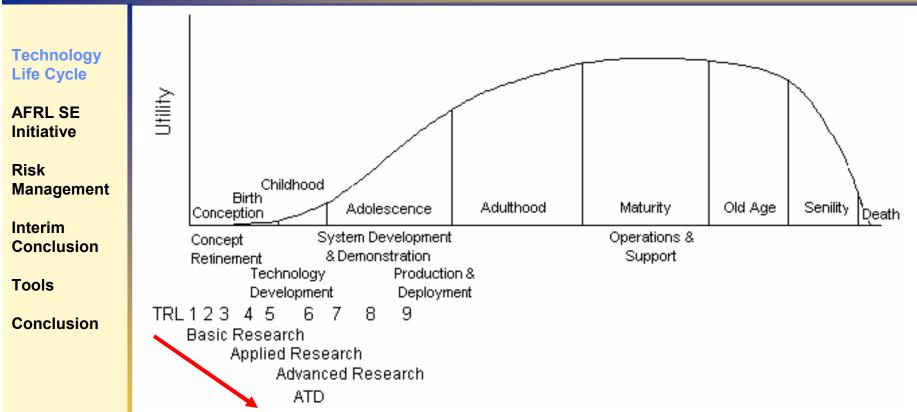
AFRL Systems Engineering Initiative Risk Management for Science and Technology

October 24 - 27, 2005


Electronics Engineer Col Norman Anderson Chief Engineer, Space Vehicles Bob McCarty Systems Engineering Lead Air Force Research Laboratory

Bill Nolte

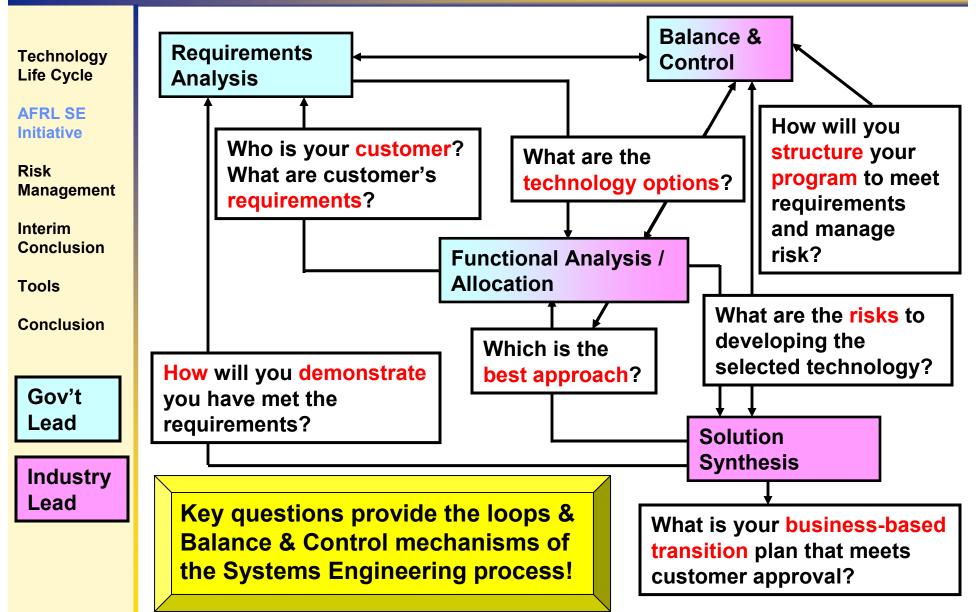
Technology Life Cycle The Whale Chart

•The Whale Chart maps the Life Cycle to the Readiness Levels and R&D Stages

•A technology's usefulness changes over time

Utility increases as a technology matures Utility decreases as a technology becomes obsolete

Knowledge Growth



Technology	Key Question	<u>Basic</u> Research	<u>Applied</u> Research	Advanced Research	ATD	<u>Man</u> Tech
Technology Life Cycle	1. Who is your customer?	Partial	Nearly Complete	Complete	Complete	Complete
Initiative Risk	2. What are customer's requirements?	Partial	Partial	Nearly Complete	Complete	Complete
Management Interim	3. How will you demonstrate you have met the requirements?	Partial	Partial	Nearly Complete	Complete	Complete
Conclusion Tools	4. What are the technology options?	Extremely Limited	Nearly Complete	Complete	Complete	Complete
Conclusion	5. Which is the best approach?	Extremely Limited	Nearly Complete	Complete	Complete	Complete
	6. What are the risks to developing the selected technology?	Partial	Partial	Nearly Complete	Complete	Complete
	7. How will you structure your program to meet requirements and manage risk?	Partial	Nearly Complete	Complete	Complete	Complete
	8. What is your business-based transition plan that meets customer approval?	Extremely Limited	Partial	Nearly Complete	Complete	Complete

Key Questions and Systems Engineering

R&D Focus on Risk

Technology Life Cycle

AFRL SE Initiative

Risk Management

Interim Conclusion

Tools

Conclusion

Two of the Key Questions Focus on Risk in R&D

What are the risks to developing the selected technology?

How will you structure your program to meet requirements and manage risk?

Technology Life Cycle

AFRL SE Initiative

Risk Management

Interim Conclusion

Tools

Conclusion

- Three Distinct Levels of Research and Development
 - Basic Research develop a fundamental understanding of selected physical properties
 - Applied Research investigate application of physical properties to selected technical needs
 - Advanced Technology Development explore application of technology to assess military relevance

Philosophy of RM in Basic Research

<u>What</u>

Technology Life Cycle

AFRL SE Initiative

Risk Management

Interim Conclusion

Tools

Conclusion

- Develop cost estimates for advancement of technology to useful level
- Identify development options and relative difficulty of options
- Maintain budget within pre-defined boundaries

<u>How</u>

- Establish knowledge incremental goals
- Estimate cost/time needed to achieve
- Determine risks associated with maintaining cost/schedule
- Track variances for periodic cost/schedule replan

Primary purpose of RM in Basic Research is to refine development roadmap

Philosophy of RM in Applied Research

<u>What</u>

	<u></u>
Technology Life Cycle	 Develop technology into a repeatable engineering
AFRL SE	capability
Initiative Risk	 Identify extent of applicability of technology to military needs
Management	
Interim Conclusion	 Determine the cost/benefit parameters of this new caapability
Tools	<u>How</u>
Conclusion	 Explore range of application of technology
	Refine development roadmap for specific applications
	 Determine risks associated with achieving required performance at known cost/schedule
	 Identify issues of repeatability and define mitigation approaches

Primary purpose of RM in Applied Research is to balance cost & performance

Philosophy of RM in Advanced Technology Development

Technology Life Cycle	
AFRL SE Initiative	
Risk Management	
Interim Conclusion	
Tools	
Conclusion	

Apply engineering capability to specific military need

- Identify issues causing uncertainty in application
- Refine cost/performance relationship.

<u>How</u>

- Manage to cost/schedule
- Provide mitigation options and go/nogo gates
- Determine risks early, maintain constant awareness
- Identify potential of cost/schedule failure early (precursors), manage proactively

Primary purpose of RM in ATD is to balance cost, performance, schedule

Technology Life Cycle

AFRL SE Initiative

Risk Management

Interim Conclusion

Tools

Conclusion

Key Questions 6 and 7 provide the basis of the AFRL Risk Management process

Questions apply to R&D programs at all stages of maturity

Knowledge available to the program manager changes with program maturity

Risk Management philosophy changes with program maturity

Risk Management Tools

Disclaimer:

Technology Life Cycle

AFRL SE Initiative

Risk Management

Interim Conclusion

Tools

Conclusion

This is a partial listing of risk management tools that have proved to be useful in the science and technology environment

The presence of a tool's name and description in this presentation does not constitute an endorsement by the US Air Force or any of its officers or personnel

The absence of a tool's name and description from this presentation does not constitute a finding of unsuitability or a criticism of the product by the US Air Force or any of its officers or personnel

Technology Life Cycle	AFMC/TRIP Risk Mgmt
AFRL SE Initiative Risk	Active Risk Manager (ARM)
Management Interim Conclusion	IPPD Control Suite
Tools Conclusion	Probability /Consequence Screening (P/CS)
	Risk Matrix
	RiskNav

Risk Management Tools

Technology Life Cycle AFRL SE Initiative Risk Management	Risk Radar		
	Risk Radar Enterprise		
	Technical Risk Identification & Mitigation System (TRIMS)		
Conclusion Tools	@Risk		
Conclusion	Consolidated Risk Assessment Methodology (CORAM)		
	Risk Matrix		

Risk Management Tools

Pertmaster
Risk +
Crystall Ball
Dynamic Insight
Active Risk Manager
Risk Nav

Microsoft Excel user created applications can also be useful

RiskHammer

TRL Calculator

FMEA

Summary

Technology Life Cycle

AFRL SE Initiative

Risk Management

Interim Conclusion

Tools

Conclusion

The AFRL Systems Engineering Initiative is a method of managing risk in Science and Technology

Applicable early in the technology life cycle

Key questions test risk management during program reviews

A variety of risk management tools exists COTS

User created applications

Discussion / Questions

