Implementing Systems Engineering Processes to Balance Cost and Technical Performance

Dr. Mary Anne Herndon Transdyne Corporation

Sandra Salars MEI Technologies

October 26, 2005

Dr. Mary Anne Herndon 858-271-1615 <u>mah@transdynecorp.com</u> <u>http://transdynecorp.com</u>

Sandra Salars 281-283-6182 SSalars@munizengineering.com

Continuous and Effective Program Performance Sustainment in Multi-Year System Engineering Programs

Critical Program Performance Challenges....

- Large scope technical services and products programs are intended to provide wide range of service levels and product maintenance support over 5 – 10 years.
- Sustaining multi-year technical service and product support levels is impacted by increases in costs, staff transitions and changing customer requirements.

► Candidate Engineering Solution.....

- Sustaining service levels and technical performance at planned costs is facilitated by applying SE Vee life cycle model to engineer a support framework across the program.
- This support framework is used to balance the costs of maintaining program infrastructure functions and technical resources with the costs of achieving program performance goals.
- Application of the practices in the CMMI[®] Process Areas (PAs) are used across the program and projects to implement the relevant phases in the SE Vee model.

Challenges in Balancing Cost and Technical Performance

Time Factors

Realistic understanding of continually evolving customer environments

Developing and implementing validated techniques to balance cost and performance

Availability of global rapidly emerging technologies

Impact of operational changes

Life cycle planning

Cost Factors

Exponential increase in costs downstream

Mismatch in technical performance requirements versus program budget

Inflexible, non-scalable designs

System requirements obsolete before deployment

O&M infrastructure costs vs. service levels

Constructing the Program Performance Framework Using the SE Vee and CMMI Practices

Guidance....

- Focus on defining business goals and related measurements for the entire period of program performance.
- Plan and implement SE Vee model in projects across the organization sooner rather than later as retrofitting is difficult.
- Focus on measurement processes on forecasting yearly costs, required technical performance levels and program support levels.
- Engineer a process performance framework using the set of SE activities represented in the SE Vee.
- Apply SE tools and techniques, such as alternative evaluations, performance simulations, requirements definition and risk analysis across the infrastructure functions as well as technical services using practices in the CMMI.

- The SE Vee Life Cycle Model presented to the Texas Board of Professional Engineers, 1999, by Arunski, Martin, Brown and Buede.
- The phases in the Vee are traditionally applied to engineering products and services such as weapons systems, communications networks and technical support.
- In any program, phases in the Vee may not be performed or applicable or may exist in numerous projects at different times.
- Key infrastructure functions, such as finance, contracts, and HR benefit from implementing the same engineering discipline and activities as technical projects.

Engineering of Process Performance Models

Engineering of Program Process Performance Models

CMMI Process Area Categories

Project Management

(Project Planning, Project Monitoring & Control, Risk Management, Integrated Project Management, Integrated Teaming, Integrated Supplier Management, Quantitative Project Management)

Process Management

(Organizational Process Focus, Organizational Process Definition, Organizational Training, Organizational Process Performance, Organizational Innovation and Deployment)

Engineering

(Requirements Management, Requirements Development, Technical Solution, Product Integration, Verification, Validation)

Support

(Configuration Management, Process & Product Quality Assurance, Measurement & Analysis, Causal Analysis & Resolution, Decision Analysis & Resolution, Organizational Environment for Integration) 7

Engineering of Support Function Framework

Engineering of Support Function Framework (Continued)

Overview of the SE Vee, CMMI Process Areas and Business Goals

Case Study Example of Balancing Cost and Technical Performance in a Small Setting

Case Study Example of Balancing Cost and Technical Performance in a Small Setting (Continued)

 $-6.0\% \leq \text{Staff Size Accuracy} \geq 9.0\%$ $-8.1\% \leq \text{Invoice Accuracy} \geq 6.5\%$

 $0 \leq \text{Latent Defects} \geq 3$

 $4.5 \leq \text{Customer Satisfaction} \geq 5.0$

Summary

Lessons Learned.....

✓ The phases in the SE Vee provide a useful and applicable life cycle model for engineering of a framework to integrate management and technical practices across a program.

- The SE Vee is very adaptable to small settings and applies to support services, such as finance, contracts and HR.
- ✓ The practices in the current version of CMMI Process Areas cover a large percentage of the phases in the Vee.
- ✓ For best results, focus on first defining business goals and relevant measurements to implement continuous process improvement to achieve a balance of cost and technical performance via the CMMI.