

PROBLEM SPACE MODELING A Dynamic Future For Requirements Analysis

Jeffrey O. Grady President JOG System Engineering, Inc. 6015 Charae Street San Diego, CA 92122 (858) 458-0121 jgrady@ucsd.edu

1I-A-1

Agenda

- A current reality
- Program preparation
- Traditional structured analysis
- UML
- The future

How Should the Engineer Approach Unprecedented Problem Space?

System Entities

1I-A-4

A Single Model Will Not Work

Prepare the Enterprise

Prepare the Enterprise

- Select standards and corresponding templates
- Select preferred structured analysis models
- Tailor templates for alignment with models you choose to use to explore problem space
- Build data item description (DID) for each specification type/model application
 - System specification/TSA
 - Hardware performance specification/TSA
 - Software performance specification/UML
 - Software performance specification/DoDAF
 - Hardware ICD/TSA and software IRS/UML and DoDAF
- Map organization and models to template
- Apply SDD as a means to capture models products

Generic Template

3.1	States and modes
3.2	Entity capabilities
3.2.m	Entity capability m
3.2.m.n	Entity capability m, requirements n
3.3	Interface requirements
3.3.1	External interfaces
3.3.1.m	External interface m
3.3.1.m.n	External interface m, requirement n
3.3.2	Internal interfaces
3.3.2.m	Internal interface m
3.3.2.m.n	Internal interface m, requirement n
3.4	Specialty engineering requirements
3.4.m	Specialty discipline m
3.4.m.n	Specialty discipline m, requirement n
3.5	Environmental requirements
3.6	Precedence and criticality considerations

Do the Analysis Work Using Preferred Models

Ultimate Process Diagram

X: REFER TO PROGRAM SYSTEM DEFINITION DOCUMENT FOR EXPANSION

1I-A-10

The Process

Traditional Structured Analysis

Functional Decomposition

Integrated RAS and N-Square Diagram For Internal and External Interface

Identification of Specialty Engineering Constraints

ARCHITECTURE-SPECIALTY ENGINEERING MATRIX (DESIGN CONSTRAINTS SCOPING MATRIX)

SPECIALTY ENGINEERING REQUIREMENTS FLOW INTO THE INDICATED SPECIFICATIONS THROUGH THE RAS

Specialty Engineering Allocation

Specialty Discipline Q7 Allocated to Architecture A11

Four System Environmental Classes

Three Environmental Requirements Layers

- Identify spaces within which the system will have to function
- Select standards covering those spaces
- For each standard, select parameters that apply
- Tailor the range of selected parameters
- End item
 - Build three dimensional model of end items, physical processes, and process environments
 - Extract item environments
- Component
 - Zone end item into spaces of common environmental characteristics
 - Map components to zones
 - Components inherit zone environmental requirements

1I-A-18

RAS-Complete In Table Form

MID	ENTITY MODEL ENTITY NAME	requi Rid	REMENT ENTITY REQUIREMENT	PRODU PID	JCT ENTITY ITEM NAME	Docume Para	ENT ENTITY TITLE
F47 F471 F4711	Use System Deployment Ship Operations Store Array Operationally	XR67	Storage Volume < 10 ISO Vans	A A A1	Product System Product System Sensor Subsystem		
H H11 H11 H11 H12 H12 H12 H12 H12	Specialty Engineering Disciplines Reliability Reliability Reliability Reliability Maintainability Maintainability Maintainability Maintainability Maintainability	EW34 RG31 FYH4 G8R4 6GHU U9R4 J897 9D7H	Failure Rate < 10 x 10-6 Failure Rate < 3 x 10-6 Failure Rate < 5 x 10-6 Failure Rate < 2 x 10-6 Mean Time to Repair < 0.2 Hours Mean Time to Repair < 0.4 Hours Mean Time to Repair < 0.2 Hours Mean Time to Repair < 0.1 Hours	A12	Product System Sensor Subsystem Cable Sensor Element Pressure Vessel Sensor Subsystem Cable Sensor Element Pressure Vessel	3.1.5 3.1.5 3.1.5 3.1.5 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6	Reliability Reliability Reliability Reliability Maintainability Maintainability Maintainability Maintainability
 1 11 181 181	System Interface Internal Interface Sensor Subsystem Innerface Aggregate Signal Feed Source Impedance Aggregate Signal Feed Load Impedance System External Interface	E37H E37I	Aggregate Signal Feed Source Impedance= 52 ohms <u>+</u> 2 ohms Aggregate Signal Feed Load Impedance= 52 ohms <u>+</u> 2 ohms	A A A1 A1 A4 A	Product System Product System Sensor Subsystem Analysis and Reporting Subsystem Product System		
Q QH QI QN QN1	System Environment Hostile Environment Self-Induced Environmental Stresses Natural Environment Temperature	6D74	-40 degrees F< Temperature < +140 degrees F	A A A A	Product System Product System Product System Product System Product System		
QX	Non-Cooperative Environmental Stresses			A	Product System		

Prepare the SDD Capturing the Analytical Work Products

Structured Analysis Work Product Capture and Configuration Management

1I-A-21

Accomplish the SW Analysis

Unified Modeling Language Implementation Approach

Structural Classifier Analysis

Swim Lanes for Allocation

Progressive Identification of Product

Dynamic Diagrams to Explore Product Entity Capabilities

The Entity Capabilities Flow Into the Specification Through the RAS

A Particular Implementation Today

Publish the Results

Specification Review and Approval Process

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

1I-A-31

Toward Process Simplicity

Evidence of an Approach Path UML and TSA

UNIFIED MODELING LANGUAGE (UML)

STATIC REPRESENTATION			DYNAMIC REPRESENTATION					
DEPLOY- MENT DIAGRAM	COMPONENT DIAGRAM DIAGRAMS		STATE CHART	USE CASE DIAGRAM	INTERACTION COLLABOR- ATION DIAGRAM	N DIAGRAMS SEQUENCE DIAGRAM	ACTIVITY DIAGRAM	
ARCHITECTURE BLOCK DIAGRAM			STATE DIAGRAM	SCHEMATIC BLOCK DIAGRAM		TIMELINE DIAGRAM	FUNCTIONAL FLOW DIAGRAM	
PHYSICAL FACET			BEHAVIORAL FACET				FUNCTION- AL FACET	

TRADITIONAL STRUCTURED ANALYSIS (TSA)

We Still Have to Push These Together Some More

Movement to Model-Driven Development

