Successful Verification and Validation Based on the CMMI℠ Model

NDIA 2005 Systems Engineering Conference
October 25, 2005

Timothy G. Olson, President
Quality Improvement Consultants, Inc.
(760) 804-1405
Tim.Olson@qic-inc.com
www.qic-inc.com

Presentation Objectives

Briefly describe the purpose and benefits of verification and validation (V&V).

Describe the EEVVA Model and how it maps to the CMMI℠.

Describe some best-in-class V&V processes and results.

Answer any questions.
Outline

- V&V Overview
- EEVVA Model
- Some Best-In-Class V&V Processes
- Summary
- Questions and Answers

Verification and Validation Concepts

Verification: compares intrinsic properties of a work product to policies, standards, processes, procedures, requirements, etc.

Validation: compares the information content of a product or product component to extrinsic properties (i.e., Is the customer’s need met? Does the product fulfill its intended use?).

A short-hand rule to help remember V&V:
- Verification: “Am I building the product right?”
- Validation: “Am I building the right product?”

CMMISM Verification

“The purpose of Verification is to ensure that selected work products meet their specified requirements.”

“Verification is inherently an incremental process because it occurs throughout the development of the product and work products, beginning with verification of the requirements, progressing through the verification of the evolving work products, and culminating in the verification of the completed product.”

• Reference: “CMMISM for Systems Engineering, Software Engineering, IPPD, Supplier Sourcing”, CMMI-SE/SW/IPPD/SS, Continuous Version, Version 1.1

CMMISM Validation

“The purpose of Validation is to demonstrate that a product or product component fulfills its intended use when placed in its intended environment.”

“Validation activities can be applied to all aspects of the product in any of its intended environments, such as operation, training, manufacturing, maintenance, and support services. The methods employed to accomplish validation can be applied to work products as well as to the product and product components. The work products (e.g., requirements, designs, prototypes) should be selected on the basis of which are the best predictors of how well the product and product component will satisfy user needs.”

• Reference: “CMMISM for Systems Engineering, Software Engineering, IPPD, Supplier Sourcing”, CMMI-SE/SW/IPPD/SS, Continuous Version, Version 1.1
CMMISM Engineering PAs

V&V Benefits

V&V activities are important because they:

- Ensure that requirements are met.
- Remove defects from the product throughout its life cycle, reduce rework, and reduce the cost of poor quality.
- Ensure that user needs are met and ensure the product fulfills its intended use when placed in its intended environment.
- Improve the quality of the process and the product.
- Improve productivity and performance.

Outline

V&V Overview

EEVVA Model

Some Best-In-Class V&V Processes

Summary

Questions and Answers

EEVVA Model

<table>
<thead>
<tr>
<th>EEVVA</th>
<th>Review Purpose/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>Communication; Raise Issues (e.g., Walkthroughs)</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Raise issues; Consensus (e.g., Peer Reviews)</td>
</tr>
<tr>
<td>Verification</td>
<td>Verify req.s; Remove defects (e.g., Inspections)</td>
</tr>
<tr>
<td>Validation</td>
<td>Meet user needs (e.g., User Groups)</td>
</tr>
<tr>
<td>Assurance</td>
<td>Product and process assurance (e.g., Audits)</td>
</tr>
</tbody>
</table>

Mapping EEVVA to CMMISM

Education is in the CMMISM, but not necessarily aligned with verification or validation (e.g., using walkthroughs for education).

Evaluation is implied in the CMMISM.

Verification was in the CMM[®] (e.g., testing, peer reviews, etc), but not explicit. Verification is explicit in the CMMISM.

Validation was missing in the CMM[®], but is explicit in the CMMISM.

Assurance is also explicit in the CMMISM (e.g., PPQA).

EEVVA to CMMISM Summary

The major strength of EEVVA is that it helps organizations to have an explicit objective for each type of review.

EEVVA also provides additional objectives for reviews not explicitly in the CMM[®] or CMMISM (e.g., education, evaluation).

CMMISM supports EEVVA (better than the CMM[®]).

However, there are some V&V best practices that are not required in CMM[®] or CMMISM.
Outline

- V&V Overview
- EEVVA Model
- Some Best-In-Class V&V Processes
- Summary
- Questions and Answers

Best-In-Class Verification

Prevent and remove defects/problems as early in the life cycle as possible.

Use inspections, peer reviews, and walkthroughs to verify life cycle work products (e.g., requirements, design, implementation, etc).

Use education (e.g., walkthroughs) to share product knowledge with professionals.

Use testing best practices to remove remaining defects (e.g., unit test, integration test, system test, regression testing, reliability/statistical testing).

Use verification processes as early as possible.
Best-In-Class Validation

Remove problems as early in the life cycle as possible (e.g., meet with users/customers).

Use validation processes (e.g., user group meetings, reviews, prototyping) to validate life cycle work products (e.g., requirements, use cases).

Educate users/customers on the product (e.g., usage scenarios, product training, etc).

Use validation best practices to prevent and detect remaining defects/problems (e.g., simulation, acceptance testing, etc).

Use validation processes as early as possible.

Example V&V Activities

EXAMPLE VERIFICATION ACTIVITIES

- Inspect 100% SyRS/SRS
- Peer Review 100% Designs
- Inspect 100% Critical Implementation
- Reliability/Statistical Testing
- Verify Changes

<table>
<thead>
<tr>
<th>REQUIREMENTS</th>
<th>DESIGN</th>
<th>IMPLEMENTATION</th>
<th>TEST</th>
<th>RELEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Cases; User Reviews; Customer Priorities</td>
<td>Prototyping; Decision Analysis & Resolution</td>
<td>Simulation</td>
<td>Acceptance Testing</td>
<td>User/Customer Feedback Reviews</td>
</tr>
</tbody>
</table>

EXAMPLE VALIDATION ACTIVITIES
Best-In-Class V&V Strategies

Industry Standard
Cost Ratio to Fix a Defect

- Data from Gib, T. and Graham, D. Software Inspection. Addison-Wesley, 1993.
Early Defect Detection (EDD) Shortens the Schedule

RESOURCES

$ Without Early Defect Detection
With Early Defect Detection

SCHEDULE

Requirements Design Implementation Test Release

Early Defect Detection (EDD) Shortens the Schedule

• Adapted from Fagan, M. "Advances in Software Inspections", IEEE Transactions on Software Engineering. July 1986

EDD Strategy: Defect Removal Efficiency (DRE)

NUMBER OF DEFECTS

Inspect 100% SyRS
Inspect 100% SRS Peer Review Designs
Inspect 100% Critical Implem.
Peer Review Other

Requirements Design Implementation Unit Test Test Release

EDD Strategy: Defect Removal Efficiency (DRE)

Best-In-Class EDD Benchmarks

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>WORLD-CLASS BENCHMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs of Poor Quality (COPQ)</td>
<td>Reduced from 33% to under 10% (Goal: Cut COPQ in half in 5 years)</td>
</tr>
<tr>
<td>Defect Removal Efficiency</td>
<td>70-90% defect removal before test</td>
</tr>
<tr>
<td>Post-Release Defect Rate</td>
<td>Six Sigma (i.e., 3.4 Defects Per Million)</td>
</tr>
<tr>
<td>Productivity</td>
<td>Doubled (e.g., in 5 years at ~20% a year)</td>
</tr>
<tr>
<td>Return on Investment</td>
<td>7:1 - 12:1 ROI</td>
</tr>
<tr>
<td>Schedule / Cycle Time</td>
<td>Reduced by 10-15% (e.g., per year)</td>
</tr>
</tbody>
</table>

Outline

V&V Overview

EEVVA Model

Some Best-In-Class V&V Processes

Summary

Questions and Answers
Summary

The purpose of Verification is to ensure that selected work products meet their specified requirements.

The purpose of Validation is to demonstrate that a product or product component fulfills its intended use when placed in its intended environment.

Don’t just focus on meeting CMMI$^\text{SM}$ requirements: Focus on continuous improvement and best-in-class verification and validation in order to measurably improve quality.

Outline

V&V Overview

EEVVA Model

Some Best-In-Class V&V Processes

Summary

Questions and Answers