
Software Supportability: A Software
Engineering Perspective

Stephany BellomoStephany Bellomo
SAIC, Project ManagerSAIC, Project Manager



2

My Background

�� MS, Software EngineeringMS, Software Engineering
�� Lockheed Martin, Satellite System Programmer (C++Lockheed Martin, Satellite System Programmer (C++

Developer, DBA)Developer, DBA)
�� Intuit, Software Project Manager, (C++, Java, CORBA,Intuit, Software Project Manager, (C++, Java, CORBA,

Architecture)Architecture)
�� VerisignVerisign, IT Project Manager, IT Project Manager
�� SAIC, Software Project Manager for CDC Select AgentSAIC, Software Project Manager for CDC Select Agent

ProgramProgram



3

Overview

�� 5 Supportability Principles5 Supportability Principles
�� LessonLesson’’s Learneds Learned
�� Key Phase RecapKey Phase Recap
�� ConclusionConclusion
�� Contact InformationContact Information



4

Supportability Principles Introduction

�� Methodical approach to protecting system againstMethodical approach to protecting system against
vulnerabilitiesvulnerabilities

1. Design for
Supportability

2. Check the
“ilities”

3. Manage
Change4. Control

Quality

5. Organize for
Supportability

Vulnerability
Here?

Vulnerability
Here?

Vulnerability
Here?

Vulnerability
Here?

Look for Vulnerabilities



5

Supportability Principle Overview

�� 5 Supportability Principles5 Supportability Principles
1.1. Design for SupportabilityDesign for Supportability
2.2. Check theCheck the ““ilitiesilities””
3.3. Manage ChangeManage Change
4.4. Control QualityControl Quality
5.5. Organize for SupportabilityOrganize for Supportability

Look for Vulnerabilities



6

Design Suggestions for Managers

1.1. Design for SupportabilityDesign for Supportability

�� Designing for supportability requires diligence on the part ofDesigning for supportability requires diligence on the part of
both managers and engineersboth managers and engineers

�� What can managers do to identify vulnerabilities?What can managers do to identify vulnerabilities?
�� ““What ifWhat if”” scenariosscenarios
�� Ask your technical team what the Achilles heel isAsk your technical team what the Achilles heel is –– They will tellThey will tell

you!you!

Look for Vulnerabilities



7

Design Suggestions for Engineers

�� What can engineers to improve supportability throughWhat can engineers to improve supportability through
design?design?
�� Use a fully replicated production environment for preUse a fully replicated production environment for pre--releaserelease

testingtesting
�� DonDon’’t skimpt skimp

�� Parameterize using configuration filesParameterize using configuration files
�� Use frameworks to control designUse frameworks to control design
�� Carefully evaluate COTS products before incorporating into theCarefully evaluate COTS products before incorporating into the

designdesign
�� Incorporate distributed component design up frontIncorporate distributed component design up front



8

Staging Example

�� Projects often doubleProjects often double--use Integration Test and Staginguse Integration Test and Staging
�� ““ItIt’’s not exactly the same environment as production, buts not exactly the same environment as production, but theoreticallytheoretically it shouldit should

workwork””

Development
Integration ProductionIntegration

Test/Staging

Stage = Production



9

Staging Example Cont.

Development
Integration

ProductionStagingIntegration
Test

Build 1
Build 2…

Build 1
Build 2… Pre-Release

Production
ReleaseFully

Replicated

�� Fully Replicate the PreFully Replicate the Pre--Release Staging EnvironmentRelease Staging Environment

Stage = Production



10

Staging Lesson Learned
�� Example: Recently technical lead skipped the staging for aExample: Recently technical lead skipped the staging for a

small, nonsmall, non--production buildproduction build
�� 8 hrs later still working deployment issues8 hrs later still working deployment issues

Stage = Production

Development
Integration ProductionStagingIntegration

Test Staging Skipped

�� Issue identifiedIssue identified ½½ hour after pushing to Stagehour after pushing to Stage



11

Configuration File Example

�� Design Tips for EngineersDesign Tips for Engineers
�� Use Configuration FilesUse Configuration Files

�� Avoid hardAvoid hard--coding variables (I.e,coding variables (I.e, IPsIPs, hostnames, DB names, etc.), hostnames, DB names, etc.)
�� BenefitBenefit –– Supports dynamic changes to hardware setupSupports dynamic changes to hardware setup

Use Config Files

Config File

Setenv IP 122.11.333

Setenv DBNAME DB1…



12

Configuration File Lesson Learned

�� Recently migrated a legacy system to another HWRecently migrated a legacy system to another HW
configuration for highconfiguration for high--availability (clustering)availability (clustering)
�� Spent 2 weeks removing hard coded valuesSpent 2 weeks removing hard coded values
�� Host names andHost names and IPsIPs were embedded throughout the code andwere embedded throughout the code and

reportsreports

Use Config Files

DocReport.rpt

SQLConnect(‘DB1’);

…



13

Frameworks and Design Patterns

�� Encourage developers to consider frameworks and designEncourage developers to consider frameworks and design
patterns during design phasepatterns during design phase
�� FrameworksFrameworks

�� Data Entry Frameworks, Business Rules Frameworks, etc.Data Entry Frameworks, Business Rules Frameworks, etc.
�� Design Patterns:Design Patterns: Elements ofElements of ReuseableReuseable ObjectObject--Oriented SoftwareOriented Software

�� By Erich Gamma, Richard Helm, Ralph Johnson, and JohnBy Erich Gamma, Richard Helm, Ralph Johnson, and John VlissidesVlissides

�� COTS Best PracticeCOTS Best Practice
�� I.e,I.e, DocumentumDocumentum, Crystal Enterprise, Oracle Security, SQL Server,, Crystal Enterprise, Oracle Security, SQL Server,

etc.etc.

Focus on Frameworks



14

Framework Definition

�� AA FrameworkFramework is a set of cooperating classes that make upis a set of cooperating classes that make up
a reusable design for a specific class of softwarea reusable design for a specific class of software

�� L. Peter Deutsch. Design reuse and frameworks in the SmalltalkL. Peter Deutsch. Design reuse and frameworks in the Smalltalk--8080
systemsystem

�� Quoted in Design Patterns: Elements ofQuoted in Design Patterns: Elements of ReuseableReuseable ObjectObject--OrientedOriented
Software by Erich Gamma, Richard Helm, Ralph Johnson, and JohnSoftware by Erich Gamma, Richard Helm, Ralph Johnson, and John
VlissidesVlissides (gang of four)(gang of four)

Focus on Frameworks



15

Frameworks Lesson Learned
�� Indicators that you need a frameworkIndicators that you need a framework

�� Frequently making the same types of code changesFrequently making the same types of code changes
�� Frequently adding fields to the schemaFrequently adding fields to the schema

�� Example: Document Tracking TableExample: Document Tracking Table

1010--1717--200520051010--0303--20052005Doc2Doc2D2D2

1010--1515--200520051010--0101--20052005Doc1Doc1D1D1

Approved DTApproved DTReviewed DTReviewed DTDocNameDocNameDocIDDocID …adding
tracking
tables and date
fields to DB for
each new Event

DocumentTracking

Focus on Frameworks



16

Frameworks Lesson Learned Cont.

�� FrameworkFramework--Driven Event ModelDriven Event Model
�� Event additions are data drivenEvent additions are data driven
�� No schema changes needed to add an EventNo schema changes needed to add an Event

ApproveApproveE2E2

New EventNew EventE3E3

ReviewReviewE1E1

Event TypeEvent TypeEventIDEventID

1010--1515--20052005E1E1D2D2

1010--1515--20052005E3E3D1D1

1010--0101--20052005E1E1D1D1

EventDTEventDTEventIDEventIDDocIDDocID

EventType DocEvent

Add new event here
Event Framework
Adds Date here

Focus on Frameworks



17

COTS Lessons Learned

�� COTS are generally a good thing, but can drive badCOTS are generally a good thing, but can drive bad
design decisionsdesign decisions

�� This is an ever increasing problem as the governmentThis is an ever increasing problem as the government
encourages use of COTSencourages use of COTS

�� Two Real Life Examples of COTS abuseTwo Real Life Examples of COTS abuse
1.1. Cold Fusion Dot Com experienceCold Fusion Dot Com experience
2.2. Business rule scripting in UI orBusiness rule scripting in UI or PDFsPDFs

Use COTS Carefully



18

Distributed Design Intro

�� Enforce Distributed Component Design through physicallyEnforce Distributed Component Design through physically
distributed methods, not coding standardsdistributed methods, not coding standards
�� Software distributed component architecture can be enforced bySoftware distributed component architecture can be enforced by

RMI (I.e, Web services, COM, etc.)RMI (I.e, Web services, COM, etc.)
�� Node distribution severs ties to object librariesNode distribution severs ties to object libraries

�� What happens if you try toWhat happens if you try to ““fake itfake it””??
�� Library dependencies arenLibrary dependencies aren’’t discovered until production releaset discovered until production release

testingtesting
�� ResultResult –– Last minute scramblingLast minute scrambling……

Distribute Early and Often



19

Distributed Design Don’ts

�� Plan for Unforeseen System Interface Requirements toPlan for Unforeseen System Interface Requirements to
other systemsother systems
�� Build Internal System InterfacesBuild Internal System Interfaces

�� DonDon’’t rely on coded frameworks (COTS or homegrown) tot rely on coded frameworks (COTS or homegrown) to
encapsulate layersencapsulate layers

Java or C++
Persistence Layer

Object

Distribute Early and Often



20

Distributed Design Lesson Learned - 1

�� Example: In 1993 first job out of VA Tech, workedExample: In 1993 first job out of VA Tech, worked
on aon a DoDDoD satellite simulation systemsatellite simulation system
�� Tasked to resolve this error for 6 monthsTasked to resolve this error for 6 months

•• ERROR: File not found!ERROR: File not found!

�� Why?Why?
�� Distributed design enforced by coding standardDistributed design enforced by coding standard
�� No physical separation of software componentsNo physical separation of software components

•• Months to untie code dependencies after physical distributionMonths to untie code dependencies after physical distribution

Distribute Early and Often



21

Distributed Design Lesson Learned - 2
�� Original SOW requirementOriginal SOW requirement

�� MileMile--high viewhigh view -- Build Single Government Agency DatabaseBuild Single Government Agency Database

�� Requirements changeRequirements change
�� Allow another Government Agency to securely view data in databasAllow another Government Agency to securely view data in databasee

�� Good newsGood news
�� System is frameworkSystem is framework--based and extendiblebased and extendible
�� However, still significant work to put persistence layer behindHowever, still significant work to put persistence layer behind webweb

services interfaceservices interface

Distribute Early and Often

Government
Agency

Database
UsersUsers

(Gov, Public)(Gov, Public)



22

Distributed Design Do’s

�� Do use distributed component interfaces to separateDo use distributed component interfaces to separate
software layers (I.e., Web Services API)software layers (I.e., Web Services API)

�� Provides extendible data access through a secure interfaceProvides extendible data access through a secure interface

Agency B

Persistence Layer
Objects

Secure
Web Services

API

Agency DB

External
Agency System

Internal
Agency System

Agency A

Distribute Early and Often



23

Check the “ilities”

2.2. Check theCheck the ““ilitiesilities””
�� SecuritySecurity
�� ReliabilityReliability
�� FlexibilityFlexibility
�� MaintainabilityMaintainability
�� ScalabilityScalability
�� AvailabilityAvailability

Check the “ilities”



24

Configuration Management

3.3. Manage ChangeManage Change
�� DonDon’’t attempt too much change at oncet attempt too much change at once
�� Evaluate system impacts with changing requirementsEvaluate system impacts with changing requirements

�� Use the CCB*Use the CCB*

�� Resist the temptation toResist the temptation to ““just add it in this timejust add it in this time””

CCB = Configuration Control BoardCCB = Configuration Control Board

Change a little. Test a lot…



25

Database Configuration Management

�� Worst configuration management issues consistently revolveWorst configuration management issues consistently revolve
around Database CMaround Database CM
�� I.e., Stored procedures, Schema versioning, Scripts, HandI.e., Stored procedures, Schema versioning, Scripts, Hand--data entrydata entry

�� Reasons for poor database CMReasons for poor database CM
�� In my experience,In my experience, DBAsDBAs often donoften don’’t have formal Software trainingt have formal Software training

�� SW Developers trained to use CM tools at entry level, butSW Developers trained to use CM tools at entry level, but DBAsDBAs oftenoften
not included in CM trainingnot included in CM training

�� DBAsDBAs often donoften don’’t have to integrate with otherst have to integrate with others
�� Work independentlyWork independently

•• DonDon’’t need to update baselines to test codet need to update baselines to test code

Enforce Database CM



26

Database CM Lesson Learned

�� Database Management FundamentalsDatabase Management Fundamentals
�� Creating and enforcing Database change procedures must be partCreating and enforcing Database change procedures must be part

of DBA Responsibilityof DBA Responsibility
�� Stored procedures must be and scripts stored under configurationStored procedures must be and scripts stored under configuration

controlcontrol
�� ExampleExample –– ““Lost stored procedure storyLost stored procedure story””

�� All databases should be made through scripts ANDAll databases should be made through scripts AND
TESTED!!!TESTED!!!

Enforce Database CM



27

Quality Control

4.4. Quality ControlQuality Control

�� Monitor to maintain quality and identify new risksMonitor to maintain quality and identify new risks
�� Keep CMMI inspections technicalKeep CMMI inspections technical
�� Develop processes and follow themDevelop processes and follow them

�� Enforce Independent Verification and ValidationEnforce Independent Verification and Validation
�� At a minimum, developers should not test their own codeAt a minimum, developers should not test their own code

�� QA person should report to Program ManagerQA person should report to Program Manager

Anytime is good time for a Technical Question



28

Organize for Supportability

5.5. Organize for Project for SupportabilityOrganize for Project for Supportability

�� Supportability failures often occur between teams or areas ofSupportability failures often occur between teams or areas of
expertiseexpertise
�� I.e., software team, network team, SA, Security, etc.I.e., software team, network team, SA, Security, etc.

�� Mitigation strategyMitigation strategy
�� Assign someone the specific role of enforcing crossAssign someone the specific role of enforcing cross--disciple technicaldisciple technical

qualityquality

Architect: The Tie that binds



29

Organize for Supportability Cont.

�� Chief Architect leads crossChief Architect leads cross--discipline teamsdiscipline teams
�� Qualified Tech Leads start as Software, Network or SystemQualified Tech Leads start as Software, Network or System EngrsEngrs

�� Challenge: Finding architects that can manage outside theirChallenge: Finding architects that can manage outside their
““Comfort ZoneComfort Zone””

Chief Architect (CA)

Software Lead Network Lead SA CM

Project Mgr Test Mgr QA

Program Mgr

Architect: The Tie that binds



30

Key Phrases

�� Look for VulnerabilitiesLook for Vulnerabilities
�� Stage = ProductionStage = Production
�� UseUse ConfigConfig FilesFiles
�� Focus on FrameworksFocus on Frameworks
�� Use COTS CarefullyUse COTS Carefully
�� Distribute Early and OftenDistribute Early and Often
�� Change a Little. Test a lotChange a Little. Test a lot……
�� Enforce Database CMEnforce Database CM
�� Anytime is a Good Time for a Technical QuestionAnytime is a Good Time for a Technical Question
�� Architect: The Tie that BindsArchitect: The Tie that Binds



31

Conclusion

�� In all project activities, ask yourself theseIn all project activities, ask yourself these
questions:questions:

1.1. Does this Design Decision promote Supportability?Does this Design Decision promote Supportability?
2.2. Have we considered all theHave we considered all the ““ilitiesilities””??
3.3. How well are we Managing Change?How well are we Managing Change?
4.4. Are we adequately Controlling Quality?Are we adequately Controlling Quality?
5.5. Are we organized for Supportability?Are we organized for Supportability?



32

Contact Information

�� My contact information:My contact information:
�� Stephany.a.bellomo@saic.comStephany.a.bellomo@saic.com

�� Feel free to send me questions and/or commentsFeel free to send me questions and/or comments


