Transforming Logistics

Achieving Knowledge-Enabled Logistics

2005 NDIA Systems Engineering Conference

Jerry Beck OADUSD(LPP) 25 October 2005
QDR Direction
(2001)

• Project and sustain the force with minimal footprint
• Implement performance-based logistics to improve readiness for major weapon systems and availability of commodities
• Reduce cycle times to industry standards
Total Systems Approach. The PM shall be the single point of accountability for accomplishment of program objectives for total life cycle systems management, including sustainment.

Performance-Based Logistics. PMs shall develop and implement performance-based logistics strategies that optimize total system availability while minimizing cost and logistics footprint. Sustainment strategies shall include the best use of public and private sector capabilities through government/industry partnering initiatives, in accordance with statutory requirements.
DoD 5000 Acquisition Model
Linked With JCIDS Process

- Process entry at Milestones A, B, or C
- Entrance criteria met before entering phase
- Evolutionary Acquisition or Single Step to Full Capability

User Needs & Technology Opportunities

JCIDS A, B, Or C

Pre-Systems Acquisition

Concept Refinement

Technology Development

System Development & Demonstration

Production & Deployment

Sustainment

Program Initiation

FRP Decision Review

Range:

Design Readiness Review

LRIP/OT&E

ICD

CDD

CPD

ICD: Initial Capabilities Document
CDD: Capabilities Development Document
CPD: Capabilities Production Document
IOC: Initial Operating Capability
FOC: Full Operating Capability
LRIP: Low-Rate Initial Production
OT&E: Operational Test and Evaluation
FRP: Full Rate Production

Emphasis on Evolutionary Acquisition
Acquisition Framework from the Warfighter View

Operations & Support

Sustainment

PRE-IOC AND POST IOC SUPPORTABILITY ASSESSMENTS

Sustaining the System

- Ready Available Safe Assets
- 24/7 Availability
- Reliability & Maintainability
- Affordable Weapon Systems
- Obsolescence/Tech Refresh
- Reduced Footprint
- Logistics Chain Reliability
- Logistics Chain Effectiveness
- Logistics Chain Cycle Time
- Retrograde Management
- Production Flexibility
- Supply Chain Agility
Performance-Based Logistics (PBL)

- Buy weapons system support as an integrated, affordable, performance package designed to optimize system readiness
- Defined performance goals with clear lines of authority
- Support structure based on long-term performance agreements
- Supplier accountable for continuously meeting the users needs
- Compensation based on outcomes, not activities

Buying performance as a package and a capability.
Structure, Strategy, and Process

Structure
- Designate a Single Point of Accountability for the Weapon System from Cradle to Grave
 - Total Life Cycle Systems Management (TLCSM)

Strategy
- Buy Weapon System Support As an Integrated Package, vice Segmented Functions
 - Performance Based Logistics (PBL)

Process
- Incorporate best practice elements (LEAN, SIX SIGMA, TOC)
 - Continuous Process Improvement (CPI)
PBL is Performance-Based Life Cycle Product Support

PBL Guidance: A strategy for weapon system product support that employs the purchase of support as an integrated, affordable, performance package designed to optimize system readiness. It establishes performance goals for a weapon system through a support structure based on long-term performance agreements with clear lines of authority and responsibility to continuously meet the users needs.

- **Functions That May Be the Life Cycle Responsibility of the Provider:**
 - DMSMS/Obsolescence Management
 - Requirements Determination
 - Engineering and Technical Services
 - Configuration Management/Control
 - Technology Insertion
 - Transportation & Warehousing
 - Technical Data Management
 - Retrograde Management
 - FMS Support (If Applicable)
 - Public/Private Partnerships or Teaming
Spectrum of PBL Strategies

PBL strategies will vary along this spectrum depending on:

- Age of System (Phase in Life Cycle)
- Existing Support Infrastructure
- Organic & Commercial Capabilities
- Legislative and Regulatory Constraints

Examples:
- Total System Support Partnership (TSSP)
- Industry Partnering
- Service Level Agreements
- Performance-based Agile Logistics Support (PALS)
- Prime Vendor Support (PVS)
- Contractor Delivery System (CDS)
- Performance Plans
- MOU with Warfighter

One Size Does Not Fit All

PBL is **NOT** CLS
PBL Weapon System Support

Real-Time System Status

Industry/Government

Partnerships

Ensure system is sustained at optimum level per PBA

Weapon System Management

Buys Performance As a Package (Including Surge/Flexibility)

Force Provider

Provide continuous, reliable, affordable support per PBA

Visibility into cost/risk decisions across life cycle

Acquisition

Sustainment

Disposal
Developed Output Metrics

Questions Answered

- Operational Availability Are we ready?
- Mission Reliability Will we be effective?
- Cost per Unit Usage What is the cost?
- Footprint How much real estate do we need?
- Logistics Response Time Are we sustainable?

AT&L memo of 16 August 2004 Performance Based Logistics; using Performance Based Criteria
Hierarchy of Key Documents

System Engineering Plan

DoDD 5000.1
DoDI 5000.2
5/12/2003

Def Acq Guide
9/9/2004

Supportability Guide
10/24/2003

PBL Guide
11/1/2004

DMSMS Guide
4/7/2005
Under TLCSM the PM is responsible for Life Cycle Logistics (LCL), emphasizing LCL in systems engineering and implementing product support through Performance Based Logistics (PBL).
Established Supportability Design and Assessment Criteria

Under Secretary of Defense Memo of 24 Oct 03

• Technical guidance to assist the PM to effectively implement TLCSM and PBL
• Incorporates Design for Operational Effectiveness (DOE) criteria into the systems engineering process to:
 - Increase Reliability
 - Reduce Logistics Footprint
• Evaluation Criteria for all Milestones
• Establishes IOC and Post IOC Reviews
• Provides template for PM & Team to use in defining and assessing program life cycle supportability requirements
FRAMEWORK: System Design for Operational Effectiveness
DAU Website

• LOG CoP provides logisticians with direct access to references, guides, and tools for job support and was recently enhanced to add new resources – like the PBL Toolkit and logistics library. LOG CoP is accessible on the internet at <https://acc.dau.mil/log>

• The Performance Based Logistics (PBL) Toolkit is now accessible via LOG CoP. The Toolkit assists Program and Logistics Managers in the design and management of PBL strategies for buying weapon system capability. It is based on a 12-step process model that guides users through each step of developing a PBL strategy, and provides ready access to policy, references, examples, and other useful information. The direct link is https://acc.dau.mil/pbltoolkit

• Link to: Integrated Framework Chart Main System View http://akss.dau.mil/ifc/

• Direct any questions to Jill Garcia at jill.garcia@dau.mil
Integrated Framework Chart - System View

http://akss.dau.mil/ifc/
SDD “Design for Support”
PBL Demonstrated in OEF/OIF

JSTARS
B-2
F/A-18 E/F
F-117
C-17
AWACS
Common Ground Station

Delivering Capability NOW!
Performance-Based Logistics

- 98% current OR Rate (total)
- 94% average OR Rate over 189 days of combat operations.

- Life Cycle Management
- Gov’t/Industry partnership
- Embedded health monitoring

C-17 Globemaster Sustainment Partnership

- Focused on warfighter needs
- Buying outcomes (not inventory)
- Aligning incentives to outcomes

<table>
<thead>
<tr>
<th>Navy Program</th>
<th>Pre-PBL</th>
<th>Post-PBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-14 LANTERN</td>
<td>56.9 Days</td>
<td>5 Days</td>
</tr>
<tr>
<td>ARC-210</td>
<td>22.8 Days</td>
<td>5 Days</td>
</tr>
<tr>
<td>H-60 Avionics</td>
<td>52.7 Days</td>
<td>8 Days</td>
</tr>
<tr>
<td>F/A-18 Stores Mgmt System (SMS)</td>
<td>42.6 Days</td>
<td>2 Days CONUS</td>
</tr>
<tr>
<td>Tires</td>
<td>28.9 Days</td>
<td>4 Days OCONUS</td>
</tr>
<tr>
<td>APU</td>
<td>35 Days</td>
<td>5 Days</td>
</tr>
</tbody>
</table>

Decreased Response Time 70%-80%

C-17 Globemaster Sustainment Partnership

- Performance-based contract/partnership between AF & Boeing -- requires the contractor to provide sustainment support at continuously raised benchmarked levels
 - Includes parts, item management and depot-level repair of airframe and sub-components
 - $4.9B FY04 through FY08
 - Follow-on PBL relationships
 - Wheels and brakes workload
 - Triumph Air Repair for APU touch labor
 - Parker-Hannifin and ALCS in planning phase
“I just did a year in Iraq…. If we did not have [Stryker], there would have been a lot of dead Joes.”

“Stryker is an urban pacification vehicle. I love it.”

“I personally would rather get out of the Army than go somewhere that doesn’t have the Stryker.”

- Sgt. John Hedrington*

“The Stryker Isn’t a poster child gone bad. It has saved the lives of many of my fellow soldiers.”

“One of my sister platoon’s Strykers was hit by five rocket-propelled grenades and everyone on that crew is still walking.”

“Our weapons were plenty for the missions we were placed in.”

“The tires lasted longer than track pads.”

- Staff Sgt. Johnathan Vines*

*Quoted in Defense News 1/17/2005
PBL Partnership Vs. Routine Organic Repair

PBL Partnership (GE & JAX)
- Parts Cost: $300,000
- Labor & Admin Costs: $34,000
- Total Cost: $334,000
- Average Life: 2,000 hours
- **Cost per hour: $167**

Previous Organic Repair
- Used Parts: $120,000
- Labor & Admin Costs: $34,000
- Total Cost: $154,000
- Average Life: 375 hours
- **Cost per hour: $411**

PBL Process +
- Lean
- Six Sigma
- TOC

>90% Availability

Notional Construct
F404 PBL (F/A-18A-D) Status

- Four and 1/2 Year Firm-Fixed Price Contract Base Period; Five One Year options
- Largest Aviation Fixed Price PBL Contract…BCA Projects $79M Cost Avoidances
- Includes 36 F404 Major Sub-Assemblies Covering 1895 Engines
- Covers the Overhaul of the Major Sub-assemblies Regardless of Quantity Repaired/Replaced
- Provides Flying Hour and War Time Surge Flexibility
- Measurable Performance Metrics (LRT, SMA and Durability)
 - 85% Availability; Disincentives for Lower Than 75%, Incentives Up to 3% for 90% Availability
- Public Private Partnership With NADEP Jacksonville- Leverages OEM “Best Practices” Efficiencies (i.e. Six Sigma, Lean, TOC)

Exceeding Expectations!

- 100% Total Backorder Reduction Contract-to-Date
- Availability 95% (Historical, 43%)
- TAT Reduced by 25%; Backlog Reduced 50%

Improving F404 Availability While Reducing $/EFH Cost
TOW IMPROVED TARGET ACQUISITION SYSTEM (ITAS)
TOW/ITAS PBL Concept

Field Repair

• Soldier Maintainer at Organizational and Direct Support Levels
 – BIT/BITE to Line Replaceable Unit (LRU)
 – Repair by Replacement

• Contractor Forward Repair Activity (FRA)
 – Limited Depot Level Repair and Test Equipment
 – Co-located With Army Main Support Battalion at Selected Units
 – FRA (Personnel and Equipment) Deployable, Commander’s Call
 • On Unit’s Load Plan
 • 2 Hour Recall - Has Shots, Wills, Personal Equipment

Depot Repair - Raytheon, McKinney, TX

97-100% Availability to Warfighter since Feb 01
Blackhawk Health Monitoring

Description:
- On-board diagnostics and prognostics.
- Crash survivable cockpit voice and data recorder.
- Obtains real time vibration, rotor smoothing and aircraft health usage info.

Benefits:
- Obtains real time vibration, rotor smoothing and aircraft health usage info.
- Supports predictive methods to allow replacement of parts prior to catastrophic failure.
- Reduces O&S costs.
- Improves readiness.

Health and Usage Monitoring System (HUMS)

Fleet Management Recorder (FMR)

Incident Investigation Direct Download through Ethernet

Dramatic improvement in Aircraft Turn Rate on the Desert Deck!
- 89% reduction in manhours for Main Rotor Track and Balance
- 95% reduction in manhours for Tail Rotor Balance
- 87% reduction in manhours for Vibration Chuck

Successful application to a fielded system
TASKING

• Missions
 – RWCAS
 – Convoy Escort
 – Utility Support
 – Armed Recce
 – CASEVAC
 – Airfield QRF

• 24 / 7 Sustained operations

• Average % Day/Night
 – AH: 58.6 / 41.4
 – UH: 60.6 / 39.4

• FMC / MC (%)
 – AH: 61.0 / 70.7
 – UH: 55.0 / 60.0

“These old aircraft are surviving and succeeding on the backs of our maintenance Marines and at the risk of our aircrews lives.”
Our Challenge

 Ubiquitous, cost-effective capability to project and sustain power.
Logistics Transformation

Mass-Based
- More is better
- Mountains of stuff measured in days of supply
- Uses massive inventory to hedge against uncertainty in demand and supply
- Mass begets mass and slows everything down

Prime Metric: Days of supply

Just-in-Time
- Precision is better
- Reduce Inventory to a minimum and keep moving
- Use precise demand prediction and optimization to reduce uncertainty
- Works great, except when it doesn’t

Prime Metric: Flow Time

Sense and Respond
- Agile is better
- Dynamically positioned Inventory throughout
- Use transportation flexibility and robust IT to handle uncertainty
- Supports adaptive operations

Prime Metric: Effects
Fulfillment of DoD transformation strategy requires an integrated enterprise across Government and Industry.
Where We Need To Be

• Readiness objectives based upon national security strategy

• Supply Chains structured to be performance-based
 – Clear accountability for performance, outcomes, and resources

• Optimize materiel, maintenance, and fuel demands
 – System reliability driven by operational requirements

• Global end-to-end distribution capability focused on customer needs; enabled by comprehensive asset visibility

• Embedded culture of continuous improvement in performance and cost

Requires significant change in strategy, processes and systems
Why?

- DoD Logistics cost $\approx 90B$
- Secondary item inventory $\approx 77B$
- Customer Wait Time ≈ 24 days
- Materiel Readiness $\approx 70-90$

...and we are a nation at war!
Key Questions

• What is military utility of high reliability?
 – Increased use of capital assets; longer periods free of maintenance; improved safety
 – Decreased demand throughout the supply chain
 – Reduced footprint

• What can be done to achieve high reliability in defense systems?
 – Early, continuous R, M, & S engineering
 – Increased application of health monitoring, diagnostics, and prognostics

• What changes would incentivize greater focus on supportability in design?
 – PBL; sharing product supportability risk with key stakeholders

Innovation from the R, M, & S community is essential!
Performance-Based Weapon System Support

- **Performance Based Logistics (PBL):**
 - A strategy for weapon system life cycle support that employs *purchase of performance as a package*
 - Delineates outcome performance goals
 - Provides incentives for attaining goals
 - Facilitates overall lifecycle management of system reliability, readiness, supportability and total ownership costs

- **PBL…Key pillar of DoD’s Logistics Transformation**
 - Goal…improve near-term readiness of critical platforms while moving toward an end-to-end weapon system sustainment framework
 - Directed in Strategic Planning Guidance…examine all major systems by 30Sep06!

PM is life cycle manager
DoD Is Aggressively Implementing Performance Based Logistics
PBL Maturity Framework

Provides assessment of PBL maturity...

- Required Practices
- Contractual Elements
- IT Enablers
- Metrics
- Functional Ownership

...to meet the following objectives:

- Tool to evaluate overall PBL Progress
- Tool to assess PBL Performance
- Tool to identify requirements for improvement
- Tool to support rapid development of new PBL
- Tool to identify and address risk
- Tool to support BCA development
Total Life Cycle Systems Management - TLCSM

• Total Life Cycle Systems Management
 – Fundamental to the DoD approach

• Key features:
 – Single point of accountability;
 – Evolutionary acquisition;
 – Supportability and sustainment as key elements of performance;
 – Performance-based strategies, including logistics;
 – Increased reliability and reduced logistics footprint; and
 – Continuing reviews of sustainment strategies

The Challenge: Move from influencing the re-design to influencing the design at its most basic level

- PM accountable for life cycle
- Early emphasis on demand reduction (reliability/fuel efficiency)
- Customer-focused support
- Continuous cost/performance improvement

QDR: Direct application of TLCSM principles to fielded systems (where appropriate).
Status of Logistics Initiatives

(QDR 2001)

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Completed Efforts</th>
<th>Remaining Work</th>
</tr>
</thead>
</table>
| **Weapon System Support** | • Established program managers as life cycle manager
• Directed comprehensive application of performance-based logistics (PBL)
• Demonstrated combat/cost effectiveness of PBL
• Demonstrated cycle time and cost gains of lean maintenance practices | • Implement life cycle principles on fielded platforms
• Expand to outcome-focused logistics system
• Implement enabling financial processes
• Codify continuous process improvement program to include reliability, cycle time, and cost |
| **Consumable Item Management** | • Implemented world-class practices for fuel, food, pharmaceuticals, shop materials
• Demonstrated efficacy of leading commodity management practices | • Expand to logical war reserve consumable material
• Codify commodity councils |
| **Global Distribution Management** | • Established USTRANSCOM as Distribution Process Owner
• Transformed DLA into global stock positioning
• Demonstrated combat/cost effectiveness in OEF/OIF
• Ongoing asset visibility programs (RFID, UID) | • Empower USTRANSCOM with enabling authorities
• Transform joint logistics enroute infrastructure
• Codify enabling processes
• Fully implement RFID |

Blue Bold – QDR consideration/actions
The Life Cycle Triangle

Systems Requirements

- Reliability
- Maintainability
- Mobility
- Corrosion
- Safety
- Test

Materiel Readiness/ Product Support

- Condition-Based Maintenance
- Maintainability
- Level of Repair
- CORE
- Cycle Times

Life Cycle Systems Engineering

- Reliability
- Sustaining Engineering
- Reliability Centered Maintenance
- Safety

Managing Performance Across the Life Cycle
Focused Logistics

- Rapid distribution of tailored support packages
- Rapid delivery of mission-ready forces
- Reduced inventory, smaller footprint, faster response
- End-to-end communications
- Total asset visibility
- Information fusion
- Logistics decision superiority

Bottom line: Forces in theater — whether forward-stationed or deployed — deliver more capability, require less support
Focused Logistics Vision
Enabled by Better Knowledge and S&R Support

- Embedded Sensors
- Integrated Data Bus
- On-Board Diagnostics and Prognostics
- Interactive Training & Tech Support
- Maintenance History Configuration Control
- IETMs
- Portable Maintenance Aids
- UID/SIM
- Maintenance
- Interactive Training & Tech Support
- Sense & Respond Logistics
- Anticipatory Materiel
- Reduced Footprints
- Predictive Maintenance
- Preventive Maintenance
- Troubleshooting and Repair
- CBM+
- Condition Monitoring Reliability Analysis
- Linked to Warfighters

- Real-time Status of Equipment Material Condition
- Integrated Supply/Maintenance via Serialized Item Management
- Total Asset Visibility

RCM Data Analysis
Battlespace Network
Total Asset Visibility (RFID)
1. **Product Support Engineering**
 - CBM +
 - Data Management
 - Configuration Management

2. **Data Transmission**
 - GCCS
 - GCSS

3. **Technical Response Center**
 - Industry/Government Team
 - Maintenance & Supply Data

Technical Data is a Major Enabler to Achieve S & R
- Technical Publications
- Product Data Management
- Professional Development
- Technology Development
Defense Logistics Roadmap

Defense Logistics Executive (DLE)

Joint Theater Logistics Management

FLE 2005 - 2010

Sense & Respond Logistics

JFPSO

Source of Supply

RDT&E

Acquisition

Storage

Inter-Theater Mvmt

Intra-Theater Mvmt

Tactical Mvmt & Dist

Distribution Process Owner (DPO)

* Joint Force Projection and Sustainment for Full Spectrum Operations
Maintenance Excellence Must Fit with War Fighter Vision

Network Centric Global Command & Control System

Global Joint Integrating Concept (JIC)

GCCS Definition
Integrated Engagement Space
Critical operational capabilities identified
Global Combat Support System
Focused Logistics Enterprise

Common OSD Portal

Secure Access System

- Tanks
- F/A-18
- F-22
- MMA
- Comms
- USN/USMC/USAF/USA
- JSF
- Ships
- Howitzer
- Subs
- Blackhawk
Support for FCS, JSF, DDX, F/A-18 and others

Industry Based

Support for FCS, JSF, DDX, F/A-18 and others

Data Warehouse

Message Assurance

Intelligence

DOSS Message Log

ODS Message Log

Data Warehouse

JTDI/SPOE (CDE)

Data Models

Multiple Weapon Systems

Suppliers

AIA/NDIA

DoD Based

Army

Navy

Marines

Air Force

DLA

TRANSCOM

Notional

Base

Others

Allies

Industry Based
Stay Focused!

“On my signal ... unleash hell....”

The Logistics Challenge: Ubiquitous, cost-effective capability to project and sustain power.
Cultural Barriers is a politically correct disease, invented by consultants to justify high fees and adopted by some as an excuse for a lack of leadership and courage!
Summary

- **Government and Industry must work together to achieve this objective**
 - Framework has been established
 - Program Managers are Total Life Cycle Systems Managers
 - PBL is the preferred sustainment strategy
 - Performance based products
 - CBM, UID, and RFID are important enablers
 - Challenge to implement, must be cost effective
 - Change is hard, but we owe it to the Warfighters to succeed

Meeting Warfighter needs Around the Clock, Around the Globe.
BACKUP
Deputy SecDef PBL Guidance

- PBLs established as a DoD best practice
- More aggressive approach for PBL implementation
- Direction to issue “clear guidance” on performance-based purchasing
- Each Service has 120 days to provide a plan for aggressive PBL implementation
Recent PBL Efforts

<table>
<thead>
<tr>
<th>✓ DepSecDef PBL Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>– AT&L issue consistent guidance</td>
</tr>
<tr>
<td>– Service plans for all ACAT I and II programs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>✓ Strategic Planning Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Service BCAs for all ACAT I and II by FY 06</td>
</tr>
<tr>
<td>– Initial management review by September 04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>✓ Clear PBL BCA Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Total life cycle costs</td>
</tr>
<tr>
<td>– Best value</td>
</tr>
<tr>
<td>– Operationally driven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>✓ Clear PBL Contracting Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Accelerate PBL Contracting</td>
</tr>
<tr>
<td>– Establish PBL Metrics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>✓ Established Supportability Design and Assessment Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Incorporates SDOE</td>
</tr>
<tr>
<td>– Technical Guidance by Milestone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>✓ New Defense Acquisition Guidebook</th>
</tr>
</thead>
<tbody>
<tr>
<td>– PM’s TLCSM and PBL responsibilities clearly defined</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>✓ Updated PBL Product Support Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>– A Tool for Program Managers</td>
</tr>
<tr>
<td>– Incorporates latest lessons learned</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>✓ MID 917 – PBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Lead programs</td>
</tr>
<tr>
<td>– Program/budget to single activity group</td>
</tr>
</tbody>
</table>

- **24 Oct 03**
- **20 Oct 04**
- **10 Nov 04**
- **On Line**
Total Life Cycle Systems Management Metrics

Customer Focus
- Operational Availability
- Mission Reliability

Operational Performance
- Logistics Response Time

Economic Performance
- Cost Per Unit Of Usage
- Logistics Footprint
Weapon Systems Selected

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A: (Candidates)</td>
<td>23</td>
</tr>
<tr>
<td>Category B: (Possible Candidates)</td>
<td>87</td>
</tr>
<tr>
<td>Category C: (Not Candidates)</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>148</td>
</tr>
</tbody>
</table>
Weapon Systems Selected
Continued

Category A: Candidates

- **Joint Services**
 - MV-22 Osprey
 - Joint StrikeFighter
- **Navy/Marine:**
 - Advanced Amphibious Assault Vehicle/Expeditionary Fighting Vehicle
 - F/A-18 Hornet
 - LDP-17 San Antonio Class
 - E-2 Advanced Hawkeye
 - RQ-8 Fire Scout
 - Broad Area Maritime Surveillance (BAMS) UAV
 - E-6 Mercury
 - US-101 Presidential Helicopter
 - P-8 Multimission Maritime Aircraft
 - H1 (4 Blades)

- **Army:**
 - FCS (Future Combat Systems)
 - Stryker
 - AH-64 Apache Longbow
 - Blackhawk
 - RESET Program

- **Air Force:**
 - B-2 Spirit
 - F-22 Raptor
 - MQ-1 Predator UAV
 - F-117A Nighthawk
 - F-16 Fighting Falcon
 - C-17 Globemaster III
Weapon Systems Selected
Continued

Category B: Possible Candidates

- **Joint Services**
 - Aerial Common Sensor
 - UH-1 Huey
- **Navy/Marine:**
 - AH-1 Cobra
 - EA-6B Prowler
 - KC-130 Hercules
 - UC-35C/D Ultra/Encore
 - AH-1W Super Cobra Helicopter
 - CH-53E Super Stallion Helicopter
 - CH/RH-53D Sea Stallion Helicopter
 - M1A1 Main Battle Tank
 - M60A1 Armored Vehicle Launched Bridge (M60A1 AVLB)
 - M88A1E1 Hercules Recovery Vehicle
 - C-20 Gulfstream Logistics Aircraft
 - C-130 Hercules Logistics Aircraft
 - C-40A Clipper Logistics Aircraft
 - E-2 Hawkeye Early Warning and Control Aircraft
 - E-6A Mercury Airborne Command Post
 - EA-6B Prowler Electronic Warfare Aircraft
 - T-6A Texan II Turboprop Trainer
 - T-39N/G Sabreliner Trainer
 - T-45A Goshawk Trainer
 - RQ-2A Pioneer Unmanned Aerial Vehicle (UAV)
 - HH/UH-1N Iroquois Helicopter
 - CH-53D Sea Stallion Helicopter
 - MH-53E Sea Dragon Helicopter
 - 5-inch Mark 45 54-Caliber Lightweight Gun
 - AGM-154 Joint Standoff Weapon (JSOW)
 - Joint Direct Attack Munition (JDAM)
 - Mark 75 - 76mm/62 Caliber 3" Gun
 - Phalanx Close-In Weapons System
 - Harpoon Missile
 - AGM-88 HARM Missile
 - AGM-114B/K/M Hellfire Missile
 - AGM-65 Maverick Guided Missile
 - Penguin Anti-Ship Missile
 - RIM-116 Rolling Airframe Missile (RAM)
 - Sea Sparrow Missile
 - AIM-9 Sidewinder Missile
 - SLAM-ER Missile
 - Standard Missile

- **Navy/Marine Cont.:**
 - Tomahawk Cruise Missle
 - Attack Submarines-SSN
 - Fleet Ballistic Missile Submarines-SSBN
 - Guided Missile Submarines-SSGN
 - Aircraft Carriers-CV, CVN
 - Amphibious Assault Ships-LHA/LHD/LHA(R)
 - Cruisers-CG
 - Destroyers-DD, DDG
 - Sea Lift
 - Landing Craft
 - Combat Logistics
 - Special Operations
 - Mine Warfare
 - Auxiliary
 - Intelligence
 - Cutters
Weapon Systems Selected
Continued

Category B: Possible Candidates Continued

• **Army:**
 – CH-47 Chinook
 – Patriot
 – Javelin
 – TOW Missile System
 – MLRS
 – M109 Paladin
 – Abrams
 – M2 Bradley
 – M113 Family
 – M1070 HET/m1000
 – HEMTT
 – HMMWV
 – Palletized Load System (PLS)

• **Air Force:**
 – A-10/OA-10 Thunderbolt II
 – AC-130H/U Gunship
 – B-1B Lancer
 – C-20
 – C-32
 – C-37A
 – F-15 Eagle
 – F-16A/B Fighting Falcon
 – HC-130P/N
 – KC-10 Extender
 – KC-135 Stratotanker
 – MH-53J/M Pave Low
 – T-1A Jayhawk
 – T-38 Talon
 – T-43A
 – T-6A Texan II
 – U-2S/TU-2S
 – WC-130 Hercules
Weapon Systems Selected
Continued

Category C: Not Candidates

- **Navy/Marine:**
 - AV-8B Harrier II
 - CH-46E Sea Knight Helicopter
 - C-2A Greyhound Logistics Aircraft
 - C-9 Skytrain Logistics Aircraft
 - C-12 Huron Logistics Aircraft
 - EP-3E (ARIES II) Signals Intelligence Reconnaissance Aircraft
 - F-5N/F Adversary Aircraft
 - F-14 Tomcat Fighter
 - P-3C Orion Long Range ASW Aircraft
 - S-3B Viking Detection and Attack of Submarines Aircraft
 - T-2C Buckeye Jet Trainer
 - T-34C Turbomentor Training Aircraft
 - H-3 Sea King Helicopter
 - TH-57 Sea Ranger Helicopter
 - VH-3D Sea King Helicopter

- **Navy/Marine Continued:**
 - Mark 38 - 25 mm Machine Gun System
 - U.S. Navy Mines
 - Torpedoes - Mark 46, Mark 48, Mark 50
 - AIM-54 Phoenix Missile
 - Vertical Launch ASROC (VLA) Missile
 - Frigates – FFG

- **Army:**
 - OH-58D Kiowa Warrior
 - Avenger
 - M119 Towed Howitzer
 - M120/M121 Mortar
 - M252 Mortar
 - M93 NBC Recon System
 - M88A2 Hercules

- **Air Force:**
 - C-141 Starlifter
 - C-21
 - MC-130E/H Combat Talon I/II
 - MC-130P Combat Shadow
 - OC-135B Open Skies
 - RC-135U Combat Sent
 - RC-135V/W Rivet Joint
 - T-37 Tweet
 - UH-1N Huey
 - WC-135 Constant Phoenix