
Approved for public release 30 September 05

PROFILING AND TESTING PROCEDURES FOR A NET-
CENTRIC DATA PROVIDER

Derik Pack

SPAWAR System Center Charleston, North Charleston, SC
derik.pack@navy.mil

ABSTRACT

A key focus for the success of Net-Centric operations is the testing procedures for web services and the
environments where those web services exist. Quite often the ability of a given service to reach a specific
performance goal is dependent on many factors found in the operating system itself, the language used to implement
the service, the service’s code quality, and related applications servers and services. A failing in the design of many
test procedures is to capture one particular measure of performance while failing to quantify the many variables
that affect that measure of performance. This often leads to lost development cycles trying to achieve a small
performance increase in one part of the system while overlooking several other easily modifiable system
components that could increase performance far more significantly. This paper presents testing procedures and
examples from the development of the Net-Centric Diplomacy (NCD) initiative of Horizontal Fusion. The examples
will primarily focus on the web services created by the initiative and the backend environment interactions that take
place. Through this description, the reader will realize the interrelated nature of many different types of testing
procedures and the necessity of good test design in order to find the most efficient means to address a given goal.

1. INTRODUCTION

With the advent of web services, the paradigm on the web is shifting from a server-to-client
model to a model where web based components are combined to build distributed applications.
For the purpose of this work, a web service is defined as any service that is accessible through
the use of standard web protocols like Extensible Markup Language (XML) and Simple Object
Access Protocol (SOAP0. This also implies the use of facilitating specifications like Web
Services Descriptive Language (WSDL) and Universal Description, Discovery, and Integration
(UDDI) in order to specify the interface to the service [1, 3]. The maturation of these standards
will allow businesses and governments to design applications that achieve far more than a
platform independent interface to a given data set. These web services will be able to register
with, naturally discover, and use other web services that can deliver information or a function
that would benefit the originating organization of the service. The resulting composable
applications would allow for a true service-oriented architecture (SOA) where defined business
processes and policies could be executed by a set of loosely coupled services built on top of
available software infrastructure [2]. Such a paradigm shift in web design would have vast
implications. Effective use of services could result in a lower cost of development, higher
component reuse, process streamlining, and smooth integration paths [4].

In order for web services to reach this point, several impediments need to be overcome.
Collectively, these issues can be thought of as areas of future work for a distributed component
based application. The issues are broken into two groups: standards barriers and technical

Approved for public release 30 September 05

barriers. The standards barriers include non-maturity of standards and semantic issues. This area
covers the misunderstanding of standards, and policy and interoperability issues that are taking
place in the adoption of web services. The technical barriers to adoption of web services include
security, performance, quality of service and reliability, and transaction support [4, 5]. Proposing
a solution to all these barriers to adoption is well outside the scope of this paper. The purpose of
this work is limited to the discussion of performance and in some instances quality of service and
reliability of web services. The scope is limited to these areas because they are heavily affected
when trying to surmount other barriers to adoption. They should, in many cases, be considered
the most important design goals for a usable net-centric system. Unfortunately, few realize the
complexity that must be taken into account when attempting to quantitatively measure the
performance and reliability when dealing with web services. The basic performance measures
and procedures need to be studied and defined for a basic system in order to facilitate a more
complex distributed environment.

The rest of the paper will highlight the NCD initiative as an example of a net-centric data
provider based upon web services. The choice of performance measures and procedures that
were used to test this initiative will be explained. Section 2 will give a short example of the
NCD web services and backend. Section 3 will define the testing measures and procedures used.
Section 4 will give some example results from NCD and Section 5 will give conclusions and
future areas of work.

2. NET-CENTRIC DIPLOMACY

Net-Centric Diplomacy (NCD) is the Department of State initiative in the Horizontal
Fusion Portfolio. NCD provides Department of State cable and biographic reports to Horizontal
Fusion’s Federated Search. NCD implemented the Intelligent Federated Index Search (IFIS)
WSDL and other Horizontal Fusion specifications to create a search web service that can be
accessed by the Federated Search client. The specifications detail security, dynamic discovery,
messaging, and authentication of services within the Horizontal Fusion Collateral Space. A full
list of these specifications can be found in the Horizontal Fusion Developer Reference and
Guidance [6, 7, 8]. A full description of the entire NCD implementation is beyond the scope of
this paper, but a summary is provided (Figure 1). Figure 1 shows requests coming to NCD from
Federated Search. These requests are received by the Net-Centric Diplomacy Search Web
Service (NCDSWS). NCDSWS is the piece of the architecture that implements the Horizontal
Fusion specifications. It validates the digital signing of SOAP messages it receives, checks the
security information, and determines if the query is valid. If the request passes all these tests, it
is passed to the Post Data Retrieval Web Service (PDRWS) which translates the requests to SQL
and accesses the database to retrieve the information. The database returns the results to
PDRWS which sends them back to NCDSWS to return to Federated Search.

Approved for public release 30 September 05

Figure 1. NCD Architecture

The prime advantage of this layered architecture is the benefit to Department of State’s other

web services. Since they are on the same trusted network as the PDRWS, they can directly
access it without going through the security checking that is mandated by the Horizontal Fusion
specification.

The architecture is implemented using Apache Axis’ SOAP engine, JAVA 1.4.2 SDK,
Apache Tomcat, and MS SQL Database 2000.

3. PERFORMANCE MEASURES AND PROCEDURES

One of the many goals in testing NCD is to quantify the boundaries of performance for the
services that exist. In reviewing standard testing procedures for web applications, performance
testing often focused on stressing the user interface. When dealing with web services, this
standard for performance testing will no longer hold. Although performance tools exist that
directly stress web services, two secondary considerations exist that must be considered. The
first of these considerations is all the other services and application servers that a service calls in
order to fulfill its function. These services and application servers affect the overall performance
of any web service that calls them. In many instances the organization creating a service will not
have direct control of its dependencies. Downtime on the part of a service’s dependency will
also cause downtime in that service. The second consideration is external specifications for a
service. Essentially, the business processes that define the use of a service as an application
reside outside the service. A WSDL defines the interface to a service, but the valid use of an
implementation of that interface is not specified. These external specifications can have an effect
on the performance of a service that cannot easily be seen using non-customizable testing tools.
A prime example of external specifications is a web service that implements a query syntax. The
query syntax may allow for highly recursive but semantically meaningless queries that would
decrement the performance of the service if multiple client applications sent them. This issue is
as much an initial design issue as a testing issue. With the composable nature of services, one
must be wary of making one’s service dependent on other services that may have such problems.
In order to overcome these problems, NCD’s testing procedures are based upon understanding
and maximizing the performance through the use of characterization testing and profiling of a
service’s many dependencies along with testing the web service directly.

The procedure for testing performance during development is two-stage. The first stage is to
define metrics that directly measure some element of a web service’s performance. The second-
stage is to create tests that measure individual system components to determine the best methods

Approved for public release 30 September 05

to increase overall system performance through the defined metrics. The following sections will
be constrained to the metrics and tests used in the development stages of the project. As the
project has progressed into an operational phase, different metrics and tests must be used in order
to maintain the highest uptime available. This led to a set of diagnostic tools for the operational
environment. These tools serve as a dashboard to monitor the internal and external services and
servers that NCDSWS relies upon that are maintained by other initiatives or organizations. The
results from these tools are used to replicate problems that occur in the operations environment in
the development environment where the following tests and procedures are used.

3.1 First Stage Testing

Design of the first stage tests started with researching the differences between the error states of
many web applications and web services. Web servers tend to reach their break point when so
oversaturated with requests that they can no longer service them. This can cause the server itself
to go down or simply report the unavailability for a large majority of its requests. The
deserialization of SOAP requests is far more processor intensive; and as a result, the number of
requests that will cause a web service to fail is far lower than for a web server. To compound the
problem, web service errors do not always map to Hypertext Transfer Protocol (HTTP) service
codes, and the application environment and programming language can cause unforeseen
behavior depending upon their configuration. After considering these factors, the following
metrics were defined for the first stage testing:

• Round Trip Time (RTT): The time required for a request to be sent from a client, processed
by the server and returned

• Error: Incorrect results or error messages received from the web service
• Connections per Second (CPS): The number of connections that are being sent to the web

application each second

RTT was used as a metric because it gave the most accurate simulation of the time the client
would spend waiting for results. Error can be attributed to many different sources including
incorrect functionality of the web service or web server and database failure. For the purpose of
our testing, error was specified as anything that was not a correctly returned result. Measuring
error consisted of logging to determine the most likely cause of error and capturing the
percentage of errors for a set number of connection and query attempts. CPS is used because it
gives a quantitative measure of a given amount of load. It was also believed that this metric
could be used to find the optimal operational conditions for the server.

After finding these metrics, a survey was conducted among several different stress testing
utilities to determine which ones had the best abilities to capture all this information. In the end,
NCD opted to develop its own test harness (NCD LoadTest Utility) in order to better catch and
analyze incorrect results and to initiate self-developed test cases where CPS could be explicitly
set and controlled. Effective testing using the test harness requires a server or servers hosting the
web services and a separate equivalent server running the test harness which collects data from
queries it sends. During testing, processor use due to other applications is limited on the testing
server to ensure results remain objective.

The test harness provided the following types of tests: continuous tests, ramped tests, burst
tests, and adaptive tests. Continuous tests allowed the user to set the CPS and the time of the
test. The test would then run at the defined connection rate until finished. Ramped tests allow

Approved for public release 30 September 05

the user to set a start and end CPS and a number of steps to take between the start and endpoint
along with a time to stay at each step. The test increments its rate as it progresses until it reaches
the maximum rate. Burst tests are a one time burst of a set number of connections a second.
These tests are used to find average RTT for burst traffic the server could theoretically receive.
Adaptive tests allow the user to specify a start point and search for the steady state CPS that the
server can maintain. All these tests report back the RTT, CPS, and error.

3.2 Second-Stage Testing

Second stage testing consists of testing the code, application servers, runtime environment,
and operating system to determine what modifications to these components can increase overall
system performance that is measured in the first-stage tests. Several examples of testing in each
of these areas will be provided.

Code testing is the most obvious method of improving performance. This is most often done
with unit (regression) testing and profiling. Profiling will be focused on here because of its
usefulness in conjunction with some of the first stage tests. Profiling tools give a developer
insight into the amount of time spent in each method during code execution, Central Processing
Unit (CPU) usage, number of objects created, and memory allocation. Profiling is especially
useful for finding unused sections of code and discovering memory leaks. On occasion it may be
necessary to start a web service inside a profiler while applying a load in order to identify a very
slow memory leak.

When dealing with an application server, testing is not really required as long as the
limitations and best settings of the application server are known. An example would be an
Apache Tomcat server that provides the web container for the web services. In order to provide
faster servicing of requests, Domain Name System (DNS) lookup was disabled in the server’s
configuration file.

Depending on the programming language, testing the runtime environment will not be
necessary. For the case of NCD, it was important to examine the runtime environment because
of the use of Java. The performance of the Java Runtime Environment (JRE) was affected not
only by its configuration settings, but also the hardware the Java Virtual Machine (JVM) was
running on. After configuring the runtime environment to use the server JVM, garbage
collection monitoring was employed. This test allowed the developer to determine the
throughput drop due to garbage collection and helped to select the best garbage collection
algorithm to use for the given system hardware.

Tests taking place in the operating system are typically used to monitor memory and CPU
usage. These tests are especially useful when using the test harness to test for several days
continuously. They can correlate any unusual results that take place while sending results.

3.3 Procedures

Testing procedures for NCD were initiated with first stage testing. Cycles of burst, continuous,
and ramped testing were conducted until failure levels were reached. These levels were based on
whether RTT and error exceeded certain thresholds. The initial thresholds for error were either
complete unresponsiveness of the server or a percent error greater than 15%. The initial failure
threshold for RTT was an average RTT for a test greater than 90 seconds. Each cycle of testing
would be repeated on the same server instance. After the repeat of a test, if the results from the

Approved for public release 30 September 05

later test were worse than the initial test, second stage testing would be used to determine if there
was a memory leak, application error, or configuration problem.

After finding and correcting a problem, a few cycles of first stage testing would be repeated.
If the results remained consistent for these cycles, then testing was limited to continuous testing
with increasing time limits. Sustained testing over several hours helped to pinpoint problems in
memory management and repetitive connections to backend data sources. If no irregularities
were found in RTT and error rate after several hours, then the tester proceeded to adaptive
testing.

The adaptive test was given a range for the highest RTT and error that is reasonable for the
service to reach. These ranges were considered the highest values possible for the system that
would still allow it to be effectively used by a user. The test then attempted to find the highest
CPS where those values existed. If the CPS generated RTT and error lower than this range, the
CPS increased. If CPS generated RTT and error higher than this range, the CPS decreased. This
testing usually ran with CPU monitoring enabled, and lasted for at least forty-eight hours. The
results for this test were used to generate a histogram to determine the optimum CPS for system.

Trend for Connection Rate over Time

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5

0 500 1000 1500 2000 2500 3000

Time (minutes)

C
on

ne
ct

io
n

R
at

e

Figure 2. Connection Rate Fluctuation

Approved for public release 30 September 05

Histogram on Connection Rate

33 2 2 1 1 1 3 9 30

144

428

791

243
203

287

474

150

6
0

100

200

300

400

500

600

700

800

900

2.5 2.5
5 2.6 2.6

5 2.7 2.7
5 2.8 2.8

5 2.9 2.9
5 3

3.0
5 3.1 3.1

5 3.2 3.2
5 3.3 More

Connection Rate

Fr
eq

ue
nc

y

Figure 3. Connection Rate Histogram

4. TESTING EXAMPLE

A testing example is given to illustrate the usefulness of effective testing tools and plans. In
the example, testing has proceeded to the point where adaptive testing is taking place. The
connection rate in the test will increase or decrease to achieve a RTT between 3.5 and 4.5
seconds and an error rate that is less than 0.05% for a given one minute sample of queries. An
error was defined as any query that did not return a result or returned an incorrect result. The
maximum test time is set at 48 hours. The connection rate over time is shown in Figure 2. A
histogram of CPS is shown in Figure 3. Although the histogram yielded a relatively high
concentration between 2.95 and 3.3 connections a second, Figure 2 shows downward rate spike
at around 26 and 48 hours. Although these spikes accounted for less than 0.34% of operating
time, secondary testing was used to find possible causes. The accompanying second stage
testing, including garbage collection and CPU monitoring, did not reveal an underlying factor
that caused this fluctuation. This fluctuation was logged for further review and monitoring.

Future plans include attempting to replicate the results in another development environment
and designing operational testing to monitor for such aberrations. Looking at the rest of the
results from the adaptive test showed that the mean CPS was 3.06 with a 99% confidence value
of 0.01.

5. CONCLUSIONS

The greatest conclusion that can be realized from the testing procedures is that even though
exhaustive testing is not possible, testing is still iterative and time intensive. Various levels and
types of tests had to be repeated in order to characterize the architecture’s performance and to
find implementation errors and flaws. A major benefit of development testing was the

Approved for public release 30 September 05

realization of the bottlenecks within system components. This knowledge was vital to the
development of the operational system monitoring tools. With these tools, the ability to diagnose
failure within a loosely coupled web services architecture was facilitated.

NCD will also continue its ongoing activities in developing its test harness. This tool has
helped in testing functionality and measuring performance of various web services. The ability
to test functionality was extremely important since anyone can generate client classes from the
accompanying web service’s WSDL. This means that clients can submit requests that are
syntactically correct but semantically meaningless. The ability to test for such problems added
robustness to the initiative’s web services.

The last area of continued research and development for NCD will be in developing test cases
that better characterize the operational environment. Differences between the testing and
production environment like database size and server configuration can cause characterization
curves to be incorrect. By closely modeling the end environment, these problems will be
minimized.

6. REFERENCES

[1] K. Gottschalk, S. Graham, H. Kreger, J. Snell, “Introduction to Web services architecture”,
IBM Systems Journal, pp. 170-177, November 2, 2002.

[2] M. S. Pallos, “Service-Oriented Architecture: A Primer”, eAI Journal, pp. 32-35, December
2001.

[3] Glossery of XML Key Management Requirements.
http://www.w3.org/2003/glossary/subglossary/xkms2-req/

[4] M. Chen, A. Chen, B. Shao, “The implications and impacts of web services to electronic
commerce research and practices”, Journal of Electronic Commerce Research, VOL. 4, NO. 4,
2003

[5] P. Vita, “Challenges in the Adoption and Diffusion of Web Services in Financial
Institutions”, Working Paper CISL# 2004-07, 2004,
http://web.mit.edu/smadnick/www/wp/2004-07.pdf

[6] Horizontal Fusion Developer’s Reference,
http://horizontalfusion.dtic.mil/docs/specs/20041118_Final_Developers_Ref.pdf

[7] Horizontal Fusion Developer’s Guidance,
http://horizontalfusion.dtic.mil/docs/specs/20041118_Final_Developers_Guide.pdf

[8] Horizontal Fusion Standards and Specifications,
http://horizontalfusion.dtic.mil/docs/specs/20041112_HF_Standards.pdf

