A Systems Approach to Accelerating Testing, a Case Study

NDIA 8th Annual Systems Engineering Conference
October 24-27, 2005
A Systems Approach to Accelerating Testing, a Case Study

The Low Signature Armored Cab (LSAC), Stewart & Stevenson Tactical Vehicle Systems (TVS)

Co-Presenters: Douglas Chojecki, Chief Engineer R&D
Nathan Byman, Manager ILS
Regis Luther, VP Engineering
A Systems Approach to Accelerating Testing, a Case Study

Introduction

- U.S. Army pre-OIF strategy for Tactical Wheeled Vehicles (TWV) did not require armoring

- Battlefield experience in OIF quickly showed TWV required protection; ambush – small arms, IED, RPG
A Systems Approach to Accelerating Testing, a Case Study

Introduction, continued

- Demand for Armor on TWV resulted in need for accelerated development, including system-level testing
- Normal U.S. Army development test for cab would require 6 -12 months of effort, production to follow
- LSAC tested within 3 months
- Qualification testing run in parallel with first production
A Systems Approach to Accelerating Testing, a Case Study

The “Real” world

- The customer knows what they want
- Requirements are derived considering all affected by the system; users, logistics, manufacturing, finances...
- Requirements are stable, or with the rare exception: revised in a controlled change environment
- Schedules are well planned, fixed and met
- Designs successfully anticipate all failure modes and complete documentation is available for procurement, manufacturing and field support
- The end product is verified to meet all requirements
A Systems Approach to Accelerating Testing, a Case Study

The Original Requirements

- TVS IRAD effort used existing vehicle requirements
- C130 transportability was maintained
- Coupon testing of ballistic solutions validated LSAC could be built to withstand objective threat levels
- Meeting other standard FMTV requirements with LSAC allowed maximum commonality
A Systems Approach to Accelerating Testing, a Case Study

The original project milestones

Oct. 2002 Project approval/requirements analysis
Jan. 2003 Design start
Apr. 2003 Ballistic solution chosen
Jul. 2003 1st prototype cab complete
Aug. 2003 TVS test of prototype
A Systems Approach to Accelerating Testing, a Case Study

August 2003, Project is on schedule! – Success!
A Systems Approach to Accelerating Testing, a Case Study

Realizing an opportunity

• **Shortly** after successful completion of the 2-man LSAC concept cab, U.S. Army is shown concept

• Interest quickly accelerates

• Results in requirements redefinition for the armored cab
A Systems Approach to Accelerating Testing, a Case Study

Scope and schedule change dramatically

• Project changes from build and demonstrate a prototype to:
 – Build and test multiple prototypes
 – document for installation/support & test
 – in a much shorter time frame

• Requirements change significantly
A Systems Approach to Accelerating Testing, a Case Study

The new project milestones

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep. 2003</td>
<td>U.S. Army begins discussions</td>
</tr>
<tr>
<td>Apr. 2004</td>
<td>1st Prototype of 3-man cab</td>
</tr>
<tr>
<td>May 2004</td>
<td>Government testing begins</td>
</tr>
<tr>
<td>Jun. 2004</td>
<td>Safety Release</td>
</tr>
<tr>
<td>Nov. 2004</td>
<td>Contract for initial production cabs</td>
</tr>
<tr>
<td>Dec. 2004</td>
<td>Delivery of initial cabs</td>
</tr>
</tbody>
</table>
A Systems Approach to Accelerating Testing, a Case Study

Re-engineering the product

- U.S. Army ballistic requirements are specified – classified
- 3-man cab defined in place of TVS IRAD developed 2-man cab
- Man-lift changes glass configuration
- Supplemental armor requirements added
A Systems Approach to Accelerating Testing, a Case Study

Accelerated testing: durability, safety, performance

• LSAC required safety release
• 3k mile durability test scheduled at Government Test site
• Performance testing scheduled at Government Test site
• Testing scheduled to be accomplished May-June 2004
A Systems Approach to Accelerating Testing, a Case Study

Documentation; Configuration Management

- 3-D modeling developed for design
- Model revisions controlled via database
- Initial new parts built from models
- Technical data package (drawings) finalized during initial build
- Change approval streamlined
- Change approval became more limited during production to concentrate on must have, not like to’s
A Systems Approach to Accelerating Testing, a Case Study

Logistics & Supportability

- Logistics/maintainability involved during design phase to ensure supportable design
- Commonality of parts, LSAC versus standard cab used to maximum advantage
- Work instructions for field retrofit developed on 1st LSAC cab(s)
A Systems Approach to Accelerating Testing, a Case Study

Production

• Ramp-up to 300 cabs/month achieved in 4 months
• Close coordination with design engineering and manufacturing during tooling and process definition
• Manufacturing changes to TDP processed with highest priority
A Systems Approach to Accelerating Testing, a Case Study

Fielding

• Established installation teams and sites through existing support network,
• And additional site(s)
• Design concept of replaceable cab versus “add-on-armor” made installations quicker
• Data from initial fielding, gathered through established networks, enhanced testing and required/suggested were implemented expeditiously
A Systems Approach to Accelerating Testing, a Case Study

Evaluation of the Project - The Systems Engineering Process

This figure is from Bahill and Gissing (1998)
A Systems Approach to Accelerating Testing, a Case Study

How the LSAC requirements were established and changed

- Discussions with and evaluation by U.S. Army resulted in current cab 3-man capability being retained
- Internal volume of cab was also required to be minimally changed,
- Resulting increase in axle loading during transport approved as acceptable
A Systems Approach to Accelerating Testing, a Case Study

LSAC Alternatives investigations

• Major alternatives already considered or developed
 – Add on Armor to existing cab
 – 2-man vs. 3-man cab
Integration of LSAC

- Maintained standard production cab interfaces to maximum extent
- Development by OEM with full access to TDP, manufacturing and vehicles assets expedited design
- Most ILS development of technical documentation achieved during design & prototype build
A Systems Approach to Accelerating Testing, a Case Study

System Fielding

• Design concept of replaceable cab simplified installation
• Teams led by trained personnel
• Cabs shipped to theatre and installed on deployed vehicles
• Direct communication between installation teams and factory
A Systems Approach to Accelerating Testing, a Case Study

Assessing the performance

- The key to achieving success was to get the product designed and qualified ASAP.
- Testing for safety release was accomplished in less than 2 months.
 - Normally this would require at least 6 months.
- Controlling change through production and test phases is critical. Changes must be minimized!
Conclusions

• Buy-in from **all** levels required to get the project accomplished in the expedited time-frame
• Priority must be established to achieve success
• Excellent communications and working relations required