Chem-Bio Protection Without Chem-Bio Sensors:
Low Cost, Dual Use, Alternative Sensor and Information Architectures

Steven S. Streetman
ENSCO, Inc.
October 24, 2005
Overview / Disclaimer

- Current Sensor Capabilities / Limitations / Strategies
- Event Timelines
- Threats and Observables
- Alternate Detection Architectures for Overarching Detection Model
 - Acoustics
 - Radar
 - Video
 - Electro-Chemical
 - Procedural
- Summary
Current Sensor Performance

• Sensors Do Not Provide Protection
 – Sensors provide warning to enable protective measures
 – Warning MUST be sufficiently detailed and reliable to allow protective measures to be enabled

• Current Capabilities
 – Chem:
 • IMS / SAW provides detection and ID in seconds to minutes for agent present at sensor
 • FTIR provides detection, ID, bearing/location in seconds for agent at range
 – Bio:
 • Particle Count / UV Fluorescence provide bio/non-bio detection in seconds to minutes for agent present at sensor
 • Active laser provides bio/non-bio detection, bearing/location in seconds for agent at range
 • HHA / PCR provides bio presumptive ID in tens of minutes
 • Lab tests provide confirmed ID in hours
Current Sensor Limitations

• Breadth of Agents Detected
 – Chem: usually CWAs and a few TICs
 – Bio: specific agents tested (usually 5-10)

• Sensor Detection Range
 – Point sensors: range is effectively 0. Agent must be present at sensor air intake
 – Stand-off sensors: 1-50km

• Info Provided / Timeliness
 – No source location for point sensors
 – Id for detection sensors often not specific (e.g. bio vs. non-bio, agent class)
 – Detection / ID time too long

• Cost: Initial Cost High; Lifecycle Cost High

• False Alarms (Nuisance Alarms)
 – Sensors cannot reliably distinguish between normal chemical or biological sources and threat
 – Example: 19 month alarm data from operational system
 • Chemical Alarms: @260,000 alarms; 13,817 events (1 per hr)
 • Biological Alarms: @9,600 alarms; 4,869 events (8 per day)
Operational Use of CBRN Sensors

• Cannot Implement Protective Responses Based on Chem-Bio Sensors Alone

• Validation Procedures
 – Threat Levels: graduated responses and information gathering
 – Multiple Phenomenologies:
 • redundant biological ID; lab tests
 • video / investigation for chem
 • Additional / alternate chemical sensors (e.g. handheld)

• Chem-Bio Sensors Become ‘Triggers’ for Validation Procedures

KEY QUESTION: Can We Use Alternative ‘Triggers’?

![Diagram showing the process flow with nodes labeled CB Trigger, Low Regret Response, Intermediate Threat Level, Medium Regret Response, Validation, and RESPOND!]
Arrows denote key detection breakpoints where earlier detection provides transformational value.

Time between Initial Effects and Casualties is short for chem events and longer for bio events.
Chemical Threats

<table>
<thead>
<tr>
<th>THREAT</th>
<th>SIZE</th>
<th>CHEMICAL</th>
<th>LOCATION</th>
<th>AMOUNT</th>
<th>RELEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial / Stored Chemical</td>
<td>Large</td>
<td>Known</td>
<td>Known</td>
<td>Known</td>
<td>Explosive</td>
</tr>
<tr>
<td>Rail Accident / Sabotage</td>
<td>Large</td>
<td>Known</td>
<td>Restricted to Rail Location</td>
<td>Known</td>
<td>Explosive / Derailment</td>
</tr>
<tr>
<td>Tanker Truck</td>
<td>Moderate</td>
<td>Possibly Known</td>
<td>Unknown / Possibly Restricted</td>
<td>Estimated</td>
<td>Spray / Explosive</td>
</tr>
<tr>
<td>Chemical Warfare Agent</td>
<td>Small</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Spray</td>
</tr>
</tbody>
</table>
Biological Threats

- Non-contagious
 - Large release
 - US Mail
- Contagious
 - Cougher
 - Contaminated products
- Location always unpredictable
- Agent type and amount unpredictable
- Small releases not detectable by any sensor type
Protection Options

• Perimeter Protection
 – Requires policies and procedures to implement; may require restrictions to flow of commerce
 – Pre-Event; not a response

• Collective Protection
 – Passive (not dependent on sensors)
 – Active (low regret response)

• Individual Protection Equipment (IPE)
 – Requires notification before exposure
 – Medium regret response

• Evacuation
 – Requires knowledge of agent location / transport
 – High regret response

• Decontamination
 – Requires knowledge of agent type / location
 – Medium to High regret response

• Treatment (e.g. antibiotics)
 – Requires knowledge of agent type / exposure
 – Medium to High regret response
Observables

• Threat / Intention
 – Communications
 – Web sites
 – Precursor purchase
• Release / Release Mechanism
 – Agent container/release mechanism
 – Smoke / cloud
 – Explosion
 – Traces of agent on container
 – Suspicious behavior
• Agent
 – Spectral signature
 – Florescence
 – Particle size
 – Cloud
• Agent Effects
 – Duress (animal or human)
 – Casualties
 – Treatments (treatment purchase)
 – Bleaching / material effects
 – Death
Alternative Detection Strategies

• Acoustics
 – Detect and locate explosion / derailment

• Radar
 – Detect and locate suspicious behavior in aircraft / watercraft

• Video
 – Detect duress, physical intrusion, smoke, suspicious activity
 – Also used for validation

• Electro-chemical sensors
 – Special purpose detection of known chemicals

• Procedures
 – Perimeter protection CONOPS
 – Data sharing (existing sensor data)
 – Source tracking (large, known chemical sources)
Acoustics

• Description
 – Small arrays of microphones with detection algorithms for explosive events

• Applicable Threats
 – Explosive releases of chem or bio agents
 – Derailments, sabotage using explosives

• Advantages
 – Detects release itself (earliest possible detection of release)
 – Provides standoff detection
 – Provides bearing/location and time of source release

• Disadvantages
 – Ineffective against spray releases or other non-explosive releases

• Dual Use
 – Gunshot / explosion detection
 – Situational awareness

• Cost
 – Low hundreds of dollars for purchase and installation
 – Largely maintenance free
Radar

- **Description**
 - Existing flight or surveillance radars along with procedures to identify suspicious behavior

- **Applicable Threats**
 - Air or Water vehicle releases

- **Advantages**
 - Detects release itself (earliest possible detection of release)
 - Provides standoff detection
 - Provides bearing/location and time of source release

- **Disadvantages**
 - Ineffective against small releases, planted explosives, or sabotage

- **Dual Use**
 - Intrusion Monitoring
 - Flight / maritime control and situational awareness

- **Cost**
 - Expensive, but often already installed in maritime or airport applications
Video

• Description
 – CCTV cameras installed at strategic areas and linked to command center
 – Intelligent video algorithms to identify events of interest

• Applicable Threats
 – Chemical releases with immediate effects on people or animals
 – Visible clouds or smoke
 – Threats that require physical intrusion (e.g., into an air intake mechanical room)

• Advantages
 – Cameras are quickly becoming ubiquitous through physical security programs
 – Possible interdiction of event (in intrusion case)
 – Provides detailed visual evidence for situational awareness; may also be used for validation
 – Long range available

• Disadvantages
 – Intelligent video algorithms to detect smoke, visible clouds, or duress are immature and may false alarm
 – Requires line of site to event or event’s effects
 – Possible day/night issues

• Dual Use
 – Situational awareness for all types of security and response applications
 – Detection of duress due to other causes than CB event

• Cost
 – Low hundreds of dollars for purchase and installation / Intelligent algorithms more expensive
 – Largely maintenance free
Electro-Chemical Sensors

- **Description**
 - Arrays of (typically 1-8) electro-chemical sensors each of which detects only a specific chemical

- **Applicable Threats**
 - Known agent at a known or restricted location

- **Advantages**
 - Detector placed near agent to detect release near release point (effectively standoff)
 - Extremely low false / nuisance alarm rate
 - Identifies source location through known storage location

- **Disadvantages**
 - Not effective against bio releases
 - Only effective against one agent per sensor

- **Dual Use**
 - Safety of hazardous chemical storage
 - Environmental sensing within a facility (e.g. radon / carbon-dioxide)

- **Cost**
 - Mid hundreds of dollars per chemical for purchase and installation
 - Moderate maintenance
Procedures

• Procedural changes provide opportunities to leverage existing detection capabilities or reduce vulnerabilities

• Examples:
 – Perimeter Interdiction
 • Vehicle Searches: swabbing sprayers or tanker trucks reduces ability to introduce quantities of agent to controlled area
 • ‘Trusted’ Personnel Programs (e.g. trusted shippers): identifies normal use of equipment / activities that are confusing sources for suspicious behavior and reduces impact on those activities from onerous procedures
 – Data Sharing
 • Existing data collection (e.g. chemical sensors at chemical plants) could be shared with EOC as part of situational awareness
 – Source Tracking
 • Implement a source tracking program for large chemical / biological hazardous materials similar to the tracking program for Level 1&2 radiation sources
 • Provides location and load information for large amounts of hazardous materials of all types
Summary

- CB sensors have limitations that, in an operational environment, require them to act as triggers to additional validation procedures.
- Other detection capabilities exist that can act as CB triggers and can for some threats:
 - Detect earlier in the event timeline.
 - Provide additional useful information such as source location.
 - Detect broad spectrum of agents.
- Alternate detection capabilities are typically:
 - Already deployed for other uses.
 - Lower lifecycle cost than CB sensors.
 - Have existing personnel to support.
- Procedural additions can provide detection and/or validation capabilities without the cost of additional detectors.

Alternate Detection Capabilities Should Be Evaluated To Replace or Augment Traditional CB Sensors in Specific Applications.