Sensor Location & Optimization Tool Set

Chemical Biological Information Systems Conference
Albuquerque, NM

October 2005

Michael J. Smith
ITT Industries
Advanced Engineering & Sciences
Outline

- Sensor Placement
- Modeling & Simulation
- Optimization
- Years One Demonstration
- Summary

Advanced Engineering & Sciences
Sensor Placement
Where is the optimal location for sensors in support of the mission?

Advanced Engineering & Sciences
SLOTS Program Definition:

Automate the analytical process and *optimize* the location of sensors to detect, identify, and quantify the CBRN hazard in support of the commander’s intent.
SLOTS Approach:

1. To establish a set of rules governing the emplacement of sensors.

2. Utilize information technologies to automate the sensor placement decision process.

3. Leverage artificial intelligence to optimize the ultimate sensor configuration.

Modeling & Sim
Representing the operational space

Heuristics
Defining the operational space

AI
Optimizing performance in the operational space
What are the “to detect” requirements?
What is the range of threats?
What is the supported mission?
What is the timeline?
Where is the operating space?

CBRN Threat
Commander’s Critical Information Requirements
Area of Operations/Concern
Sensor Package

Advanced Engineering & Sciences
Heuristics

ITT Industries
Engineered for life

Advanced Engineering & Sciences
SLOTS
Engineering better odds for detection
Multi-faceted Dependencies
Increase Complexity

CBRN Threat
Type A (case 1 & 2) Type B (Cases 1-6)

Area of Responsibility
Fixed Expeditionary Mobile

CCIRs
Detect to Warn Detect to treat

Sensor Network
Point Standoff

Advanced Engineering & Science
Defining CBRN Threat

Define the CBRN threat – “Template potential chemical targets or areas of contamination.” – The enemy order of battle to include agents, weapon systems (warheads and delivery mechanisms), and concepts of employment in the offensive and defensive. Underlying this assessment is an understanding of the field behavior of CBRN agents. This process must reflect time periods of interest, enemy courses of action and named areas of interest.

- Detailed information on enemy CBRN agents capabilities based on the type of units and weapons the enemy has available in the area of operations/area of influence (AO/AI) during a selected time period.
- Detailed information on CBRN weapon systems
- How the enemy would employ chemical, biological, flame, or smoke to support his battle plan.
- Understanding of fill rates associated with the weapons and agents
- Areas of likely employment based on threat employment doctrine.
- Detailed analysis of terrain and weather in the unit's AO during each period of interest and how they could impact on CB, flame, and smoke warfare.
- MOPP guidance for each period of interest (such as, minimum MOPP, automatic masking).
Area of Responsibility

Define the named area of responsibility/influence – “Designate templated areas that affect the scheme of maneuver as named areas of interest.” – After threat source, terrain and weather most directly impact the extent and duration of the hazard. Detailed analysis of named areas of interest and target areas of interest during periods of concern will shed light on the impact of a CBRN release. Information regarding the NAI, TAI, periods of interest is derivative of the overall battlefield assessment process.

- What is the appropriate operational focus for SLOTS?
- What are the size, typical terrain features, and layout of the selected area?
- What are the most probable threats based on the adversary capability and doctrine? What are the name areas of interest, the target areas of interest in the AOR?
- What is the Force Protection Level Assets?
- What is the impact of the threat on the NAI and FPLs to the commanders scheme of maneuver?
- What is the composition of the units conducting the operational mission and their MTOE?
- Who is the user of SLOTS in these units?
- What is the planning time frame?
- What is the availability of terrain and weather data for the AOR in the given planning time frame?
“A [CBRN] vulnerability assessment … is the primary means through which the chemical staff advisor participates in the battlefield assessment process.” – The battlefield assessment process is designed to satisfy the commander’s intent and reflect the designation of main effort. Information regarding NAIs and TAIs and their constituent critical elements such as C2 facilities, mobility corridors, troop concentrations, and assemble areas will suggest the detection objectives of the sensor arrays. Different detector types and configuration support various detection missions from detect to warn to detect to treat and will be dependent on the METT-TC.

- What are the NAIs and TAIs associated with a mission?
- What is the time period of interest?
- What are the avoidance/protection/recovery objectives for NAI/TAIs?
- What metric supports detect to warning?
- What metric supports detect for treatment?
- What metric supports detect for surface contamination?
- What metric supports detect for unmasking?

Commander’s Critical Information Requirements

Detect to Warn

Detect to treat

Advanced Engineering & Sciences
A number of sensor technologies are employed to detect CBRN threats. Sensor technology is specific to a class of agent(s) (nerve, blood, blister, choking, TIM), its physical properties (solid, gas, liquid) and its size or concentration. These technologies can be grouped into five major categories: **point, stand-off**, analytical, sorbent, and colormetric detectors.

- Chemical / Biological Agents Detected
- TIMs Detected
- Sensitivity
- Resistance to Interferents
- Response Time
- Start-Up Time
- Detection States
- Alarm Capability
- Portability
- Battery Needs
- Power Capabilities
- Environment
- Durability
- Unit Cost
- Operator Skills
- Training
Sensor Placement Dependencies

Mission = Objective (survey, monitor, recon)
Enemy = CB threat
Time = Timelines & met conditions
Terrain = Area of operations
Troops = MTOE
C = Civilians

Mission defines plans that must be developed and constrains all of the other factors.

MTOE defines sensor type, numbers, and performance.

Sensor Placement Dependencies (SLOTS)

- **Mission**
 - Defines plans that must be developed and constrains all the other factors.

- **Enemy**
 - CB threat.

- **Time**
 - Timelines & met conditions.

- **Terrain**
 - Area of operations.

- **Troops**
 - MTOE.

- **Civilians**
 - MTOE defines sensor type, numbers, and performance.

- **SLOTS**
 - Sensor Placement Dependencies.

- **Threat**
 - Space is constrained by enemy order of battle and further restricted by intelligence (possible to probable).

- **Terrain**
 - Area of interest, establishing exclusion areas and named areas of interest.

- **Weather/Climate**
 - Space is driven by the period of the mission (when and how long).
1. Define the Battlespace Environment.
 - Where might the enemy use NBC weapons?
 - What are capabilities/limitations NBC weapons?
 - Where are the densely populated areas?
 - Does area have TIM storage/production/capabilities?
 - What Intel/surveillance/recon (ISR) is available?
 - ID Limits of Command AO and Battlespace.
 - Establish Area of Interest (AOI) Limits.

2. The Describe the Battlespace Effects.

3. Evaluate the Threat.

4. Determine the Threat COAs.
Battlespace

Advanced Engineering & Sciences
IPB Results

Define the Battlespace Environment.

The Describe the Battlespace Effects.

Evaluate the Threat.

Determine the Threat COAs.

Advanced Engineering & Sciences
Sensor Placement: Yes/No/Maybe
Sensor Placement: Yes/No/Maybe

Site Selection
Green – Yes
Red – No
Yellow – Maybe
(Blue – Buffers)
Modeling & Simulation
2004 proposal envisioned fixed-site tool
New program requirements require maneuver force support tool
New requirements place challenge on hazard cube creation task
 – How much time available
 – In-field computing resources
 – Access to world-wide (or AOR) terrain databases
Options for Hazard Cube Creation

- Pre-run on *homestation* computers for entire region of interest and threat range
 - Likely very large data files
- Develop means to generate in theater to run on target CPU
 - Use METOC forecast as met input
 - How much time available?
 - Potentially lower fidelity
- Develop optimization schema that do not as rely as heavily on time-phases hazard transport phenomena
 - Dose/concentration grids
 - Need to address 3D phenomena for scanning standoff sensors (e.g., JSLSCAD)
SLOTS Will Exploit CB Dial-a-Sensor™ Modules for Sensor Optimization

- SLOTS will need to model CB sensors
- CB DAS’s PuffTable sensor library will provide sensor modeling
 - Rugged taxonomy for CB sensor definition
 - Point and standoff CB sensors
 - Active and passive (integrating, imaging) CB sensors
 - Easily extensible for new sensor classes/types
 - Standard ANSI C++ (no OS-specific calls)
 - Readily compiled on new OS
- PuffTable is interoperable with SCIPUFF, VLSTRACK, and the architecture supports MESO... JEM
- PuffTable has undergone independent verification for ATEC
Optimization
Genetic Algorithms & Sensor Location Optimization

• Decide where to deploy sensors within a given environment.
• Formulated as constrained optimization.
• Consists of three main elements:
 – **Decision variables (solution):**
 • Typically modeled by X_{ij} which is the number of sensor type i at location j.
 • We will restrict to allocating 1 sensor of any particular type to a particular location thus X_{ij} will either be 0 or 1.
 – **Objective/fitness function (performance criterion):**
 • Encodes the performance to be optimized, represented by either a maximization or minimization function (e.g., minimizing detection time).
 • We will utilize sensor characteristic models, terrain, plausible threat attack strategies, met conditions, and agent transport models to evaluate a sensor emplacement scheme’s performance.
 – **Constraints:**
 • Aspects which bound a feasible solution set.
 • Example constraints: sensor exclusion zones, critical friendly protection areas, sensor availability, and other SME extracted heuristics.
Genetic Algorithm-based Sensor Location

Set parameters for various genetic operators → Initialize population (i.e., set of solutions) → Evaluate each member of the population according to the fitness function → Select members of the population to potentially “mate” → Conduct crossover with probability P_c → Mutate “newly” formed chromosomes (i.e., solutions) with mutation probability, P_m → Replace the previous population with some or all of the new population → Is the termination criterion achieved?

Yes: Stop: select chromosome with best fitness f_X value as solution

No: Evaluate each member of the population according to the fitness function → Select members of the population to potentially “mate” → Conduct crossover with probability P_c → Mutate “newly” formed chromosomes (i.e., solutions) with mutation probability, P_m → Replace the previous population with some or all of the new population → Is the termination criterion achieved?

Advanced Engineering & Sciences
SLOTS Genetic Algorithm Research & Development Effort

- **General GA Research**
 - Research GA implementation in similar optimization problems
 - Extract knowledge to enhance our problem modeling, effectiveness, & efficiency

- **Performance Criterion (i.e., fitness function):**
 - Decide upon the performance criterion
 - Investigate the best method for fitness function evaluation

- **Constraint Handling:**
 - Capture and document domain knowledge and heuristics that will serve as the basis for the constraint set
 - Investigate GA specific constraint handling techniques
 - Select the best technique and model the constraints

- **GA Operators:**
 - Investigate various state of the art GA operators for implementing:
 - Population Size
 - Selection
 - Crossover
 - Mutation
 - Replacement

- **Develop and encode a genetic algorithm to optimize sensor location.**
Year 1

• Conduct Survey of SMEs
• Publish Sensor Placement Handbook

• AODB to CBRN DB Migration Plan
• Constraint identification and modeling
• Wind flow over complex terrain
• SCIPUFF generated transport and dispersion
• Homogeneous chemical point sensor matrix
 – Also, proposed heterogeneous chemical point sensor matrix
• Optimization based on single fitness function (TBD) (e.g., probability of detection)
• Extend to biological point sensor matrix
Summary

• Lots of research to do.
• Starting with the end in mind
 – JOEF Requirements

Questions?