Hazard Prediction with Nowcasting

Overview of Mesoscale Meteorological Modeling for Dispersion Applications at the Naval Research Laboratory

Science and Technology for Chem-Bio Information Systems Conference
Albuquerque, NM October 2005

Jason Nachamkin* and John Cook
Naval Research Laboratory, Monterey CA

Michael Frost, Daniel Martinez, and Gary Sprung
Computer Sciences Corporation, Monterey, CA

*NRL Code 7533, Phone: (831) 656-4745, Fax: (831) 656-4769, email: nachamkin@nrlmry.navy.mil
Hazard Prediction with Nowcasting

• **Description:** Develop capability to use high-resolution (~1 km) COAMPS® atmospheric forecasts as input for DoD dispersion models, and quality check the results.

• **Performers**

 Jason Nachamkin¹ (PI), John Cook¹, Mike Frost², Daniel Martinez², and Gary Sprung²

¹Naval Research Laboratory ²Computer Sciences Corporation

COAMPS® is a registered trademark of the Naval Research Laboratory
Hazard Prediction with Nowcasting

• **2005 Objectives:**
 • Develop high-resolution (~1 km hz grid spacing) atmospheric prediction capability to support DoD WMD forecasts.
 • Incorporate predicted battle space environment variables into improved chemical/biological dispersion models (JEM, HPAC, VLSTRACK).
 • Demonstrate the quality of the atmospheric and dispersion forecasts.

• **2006-07 Objectives:**
 • Develop surface analysis package for COAMPS®/NAVDAS
 • Boundary layer/surface flux parameterizations
Hazard Prediction with Nowcasting

2005 Milestones:

• Generate COAMPS® forecasts for Dipole Pride 26 field project and store results in a database.
• Develop interface for JEM using HPAC as a surrogate.
• Generate HPAC, VLSTRACK, and JEM forecasts using the COAMPS® forecasts.
• Demonstrate the quality of the JEM forecasts in comparison with the HPAC and VLSTRACK forecasts using the full suite of atmospheric forecast fields.
Hazard Prediction with Nowcasting

COAMPS-OS® is a globally re-locatable atmospheric data assimilation and forecast system

- Highly automated, limited area, multi-scale, local control
- NCODA/NAVDAS Ocean/Atmosphere analyses
- Nonhydrostatic Mesoscale forecasts generated from the COAMPS® model using MPI for scalability
- Automatically transforms output into dynamic web graphics
- Digital data in TEDS and flat files for interface to other applications
- Web-based interface

*COAMPS-OS® is a registered trademark of the Naval Research Laboratory
Hazard Prediction with Nowcasting

Dipole Pride 26:
- November 1996
- 17 field trials over 14 days
- Observed plumes (SF₆) tracked over mesoscale (~30 km) areas
- 15-minute contaminant measurements from 3 sampling lines
- 15-minute surface observations from 25 MEDA stations
- 3-hourly upper air measurements
- Chang et al. 2003 Study

From Chang et al. 2003

From Chang et al. 2003 Study
Hazard Prediction with Nowcasting

COAMPS® simulations:

- 18-hour forecasts
- 60 vertical levels, 15 layers within lowest 1500 m
- Nonhydrostatic, full physics suite
- 6-hour NOGAPS boundary forcing

Nest 4 Topography

Four nests: 27 km, 9 km, 3 km, 1 km
Hazard Prediction with Nowcasting

COAMPS® simulations:
- Evolving 3-D flow
- Highly variable
- Mesoscale terrain-forced circulations
- Validation required

Nest 4, 10m wind and Topography

Dipole Pride 26

12-hr FCST valid 1600 PST 21 Nov 1996
Hazard Prediction with Nowcasting

COAMPS® 10 m Statistics:
- Sanity check against MEDA and SYNOP stations
- Direction errors decrease with increasing wind speed
- Little dependence on grid spacing
Hazard Prediction with Nowcasting

10 m Temperature Statistics:

- Intercomparison between forecast, MEDA and SYNOP stations reveals MEDA station error
- COAMPS® analysis serves as cross reference check
Hazard Prediction with Nowcasting

Upper Air Statistics:
- Direction errors decrease with height
- Temperature biases less than 1 deg. C
- Little dependence on grid spacing
Hazard Prediction with Nowcasting

COAMPS-OS® Interface for JEM:

- HPAC interface created as surrogate for JEM
- Provided COAMPS® grib files to Kyle Dedrick (ATK-MRC/DTRA) for import into the MDS.
- Standard (30-level) and high-resolution (60-level)
- Upgrading VLSTRACK capabilities to accept 60-level forecast input
- COAMPS-OS® will be ready for JEM
Hazard Prediction with Nowcasting
11 November 1996 test case

Ongoing tests show good qualitative agreement between obs and COAMPS-driven HPAC.

HPAC 1-hr FCST
Contaminant trajectories are strongly dependent on nest resolution.

HPAC 1-hr FCSTS Valid 13 UTC 8 November 1996

27 km COAMPS Forcing

1 km COAMPS Forcing
Hazard Prediction with Nowcasting

8 November 1996 test case

OBS, release +37 min

1 km forcing shows better qualitative agreement

OBS, release +52 min

1 km COAMPS Forcing

GEN6
Concentration
08-Nov-96 13:00:00Z (60.0 min)
kg/m³
1.0E-08
1.0E-09
1.0E-10
1.0E-11
1.0E-12
1.0E-13

10 km
Hazard Prediction with Nowcasting
8 November 1996 test case

1km forcing shows more realistic flow structure

COAMPS® 12-hr FCSTS Valid 12 UTC 8 November

27 km Winds, Topo

1 km Winds, Topo

DP26
Hazard Prediction with Nowcasting

High-Resolution Lower Tropospheric Data Assimilation

Want to reduce error while maintaining physically consistent 3-D structure.
Hazard Prediction with Nowcasting

Northern SF Bay Landsat Image
Hazard Prediction with Nowcasting

NAVDAS

• NAVDAS is a modern 3-D variational analysis for COAMPS®
 – Pre-Ops testing at FNMOC prior to operations (Oct-Dec 2005).
 – Much of the code shared with global version for NOGAPS
• NAVDAS uses the actual pressure level of each observation in analysis
 – Uses all mandatory and significant level observations from soundings, aircraft data, satellite feature-rack winds, satellite temperature retrievals; MVOI only mandatory pressure levels
 – Applies correct surface pressure for surface marine observations; MVOI assigns surface data to 1000 mb level for analysis.
 – Currently land surface data at elevs above 50m not used.
• NAVDAS can define background covariance in different vertical coordinates - pressure or potential temperature.
• NAVDAS has improved upper-air and surface marine wind and temperature analyses.
Hazard Prediction with Nowcasting

10 m wind analysis; NAVDAS vs. MVOI valid 2001112912

- NAVDAS uses a single multi-grid analysis (with actual pressure levels)
- NAVDAS analysis more consistent between grids and better fit to buoy wind observations
Hazard Prediction with Nowcasting

NAVDAS Surface Data Analysis Plans

• Independent 3-D lower tropospheric analysis in terrain following coordinates
 – Use surface observations of temperature, humidity and wind over land.
 – Use satellite temperature and moisture retrievals, satellite skin temperature retrievals produced by global NAVDAS 1dvar radiance code over land.
 – Currently such surface data at elevations above 50m over land are not used by NAVDAS.

• Hourly surface analyses
 – Use COAMPS forecast as background at asynoptic hours and update NAVDAS analyses at synoptic hours

• Native COAMPS sigma-height coordinate defines boundary layer background correlation function
 – Modified to account for differences in terrain and potential temperature

• Full 3-D boundary layer structure at high resolution
Conclusions:

- Gridded COAMPS forecast fields can be used to produce useful contaminant forecasts.
- High-resolution model output show improved performance in HPAC despite RMS errors.
- COAMPS® output will be ready for JEM.

Current/Future Work:

- Complete quantitative DP26 study using COAMPS® fields in VLSTRACK, HPAC and JEM.
- Improve boundary layer and surface flux parameterizations.
- 3DVar data assimilation at high-resolution with high-frequency updates.
- Mesoscale validation techniques specifically targeted for coastal applications.
Hazard Prediction with Nowcasting

EXTRA SLIDES
Hazard Prediction with Nowcasting Correlation Function for Background Error

Geopotential Height correlation in NAVDAS can use different vertical coordinates:

- Standard pressure coordinate
- Isentropic vertical coordinate

![Graph showing geopotential height correlation with different vertical coordinates](chart.png)

versus horizontal distance
Hazard Prediction with Nowcasting

HIRS Channel Response vs. US Std. Atmos. Emission Spectra

NOAA-14 HIRS/2 SRFs and Calculated HIS Brightness Temperature Spectrum

wavenumber (cm⁻¹)
600 650 700 750 800 850 900 1000 1100 1200 1300 1400 1500 1600 1800 2000 2200 2400 2600 2800 3000

wavelength (µm)
16.0 15.0 14.0 13.0 12.0 11.0 10.0 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.75 3.50
Hazard Prediction with Nowcasting
HIRS Sounding Channel Temperature Weighting Functions

<table>
<thead>
<tr>
<th>Channel</th>
<th>Wavenumber (cm⁻¹)</th>
<th>Wavelength (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>669</td>
<td>14.95</td>
</tr>
<tr>
<td>2</td>
<td>680</td>
<td>14.71</td>
</tr>
<tr>
<td>3</td>
<td>690</td>
<td>14.49</td>
</tr>
<tr>
<td>4</td>
<td>703</td>
<td>14.22</td>
</tr>
<tr>
<td>5</td>
<td>716</td>
<td>13.97</td>
</tr>
<tr>
<td>6</td>
<td>733</td>
<td>13.64</td>
</tr>
<tr>
<td>7</td>
<td>749</td>
<td>13.35</td>
</tr>
<tr>
<td>8</td>
<td>900</td>
<td>11.11</td>
</tr>
<tr>
<td>9</td>
<td>1030</td>
<td>9.71</td>
</tr>
<tr>
<td>10</td>
<td>802</td>
<td>12.47</td>
</tr>
<tr>
<td>11</td>
<td>1365</td>
<td>7.33</td>
</tr>
<tr>
<td>12</td>
<td>1533</td>
<td>6.52</td>
</tr>
<tr>
<td>13</td>
<td>2188</td>
<td>4.57</td>
</tr>
<tr>
<td>14</td>
<td>2210</td>
<td>4.52</td>
</tr>
<tr>
<td>15</td>
<td>2235</td>
<td>4.47</td>
</tr>
<tr>
<td>16</td>
<td>2245</td>
<td>4.45</td>
</tr>
<tr>
<td>17</td>
<td>2420</td>
<td>4.13</td>
</tr>
<tr>
<td>18</td>
<td>2515</td>
<td>4.00</td>
</tr>
<tr>
<td>19</td>
<td>2660</td>
<td>3.76</td>
</tr>
</tbody>
</table>

gray = water vapor red = “window” channels
Hazard Prediction with Nowcasting

Surface Emissivity Means (Mar/Apr 2003)
Hazard Prediction with Nowcasting

Satellite Temperature Retrievals Show Positive Impacts in Boundary Layer (Sep 2004)