Fusion of Sensor and Model Data

Deb Fish, Oliver Lanning and Paul Thomas
The big picture...

Design / procure

Sensor placement

CB sensor data

Sensor-level fusion

Sensor alarm

Network fusion

Network alarm

Information fusion

Source term

Hazard prediction

Dispersion model

Other sensor data
The big picture...

Design / procure

Sensor placement

CB sensor data

Sensor-level fusion

Network fusion

Information fusion

Source term

Dispersion model

Sensor alarm

Network alarm

Hazard prediction
1) Sensor placement

- 1) Place sensors to maximise probability of any sensor detecting a release
- 2) Place sensors to maximise detection capability of the sensor network
- 3) Place sensors for optimal hazard prediction
- 4) Target UAVs and other mobile sensors...
2) Sensor procurement

• 1) Design individual sensors based on key metrics
 – sensitivity
 – probability of detection
 – false positive rate
 – response time

• 2) Procure heterogeneous network of sensors to optimise key metrics at the system level, for the area to be protected

• 3) Design sensor network to optimise quality of hazard prediction
Optimal biosensor for identification - resonant mirror
Better biosensor for hazard prediction - particle counter?

Impact of single sensor on source term estimation only - conclusions are limited!
3) Fusion of sensor and model data

Seek single, best estimate of current and future hazard by combining sensor data and model predictions. Alternative views: hazard refinement / uncertainty reduction

- Design / procure
- Sensor placement
- Sensor-level fusion
- Network fusion
- Information fusion
- Source term
- Hazard prediction
- Network alarm
- Dispersion model

Seek single, best estimate of current and future hazard by combining sensor data and model predictions.

Alternative views: hazard refinement / uncertainty reduction
3a) Literature Review

• Investigated wide variety of possible methods
 – Bayes theory
 – Kalman Filter
 – Fuzzy Logic
 – Genetic Algorithms
 – Neural Networks
 – Variational Assimilation
 – Optimal Interpolation

• Chosen short list of suitable techniques for implementation into a synthetic environment
Bayesian fusion

\[p(H \mid D) = \frac{p(D \mid H)p(H)}{p(D)} \]

- Mathematically rigorous
 - Incorporates uncertainty
- Simple in concept
- Incorporates prior knowledge
- Can be extended to incorporate any information
 - Observer range and bearing
- No absolute probabilities
- Difficult to implement (complex integrals)
- Computationally demanding
Kalman filter

\[x = x^b + K \left(y - H x \right) \]

\[K = \left(B^{-1} + H^T R^{-1} H \right)^{-1} H^T R^{-1} \]

- Sequential predictor-corrector data fusion method
 - incorporates uncertainty
- Provides prediction of the error covariances
- Incorporates prior knowledge
- KF only for linear models
 - Use extended or ensemble KF for non-linear models
- Can be computationally demanding
Variational Data Assimilation

\[J(x) = \frac{1}{2} (x - x^b)^T B^{-1} (x - x^b) + \frac{1}{2} \sum_{i=1}^{N} (y_i - Hx_i)^T R^{-1} (y_i - Hx_i) \]

- Variational method
 - Assimilates all sensor data simultaneously
- Determines optimal analysis by solving the cost function
 - Provides gradient of analysis
- Can be very computationally demanding
- Does not determine the analysis directly
Overview of optimal techniques

<table>
<thead>
<tr>
<th></th>
<th>Use observations at the same time</th>
<th>Use a time sequence of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>Optimal Interpolation</td>
<td>Kalman Filter, Bayes</td>
</tr>
<tr>
<td>Variational</td>
<td>3DVAR</td>
<td>4DVAR</td>
</tr>
</tbody>
</table>

- Most interested in techniques that use a time sequence of observations
 - Assumption that observations occur at the same time introduces additional error

- Comparison of sequential and variational methods
3b) Uncertainty propagation

- Crucial to quantify uncertainty in model predictions, as well as sensor data
 - source magnitude, time and location (x,y,z)
 - number of sources
 - meteorology (in complex environments) and turbulence
 - effects (e.g. casualties)
 - is data representative?
- MOD-funded uncertainty project

Reduce uncertainty, refine hazard
Uncertainty propagation

- Dstl have developed an uncertainty propagation framework:
 - takes probabilistic output from SCIPUFF / UDM
 - propagates uncertainty in casualties due to
 - respirator
 - breathing rate
 - toxicology
 - medical counter measures

<table>
<thead>
<tr>
<th>Course of Action</th>
<th>Without IPE</th>
<th>With IPE</th>
<th>Different Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casualty Risk</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Uncertainty propagation

- Dstl have developed an uncertainty propagation framework:
 - takes probabilistic output from SCIPUFF / UDM
 - propagates uncertainty in casualties due to
 - respirator
 - breathing rate
 - toxicology
 - medical counter measures

<table>
<thead>
<tr>
<th>Course of Action</th>
<th>Without IPE</th>
<th>With IPE</th>
<th>Different Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casualty Risk</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Confidence Interval</td>
<td>90-100%</td>
<td>0-55%</td>
<td>0%</td>
</tr>
</tbody>
</table>
3c) Sensitivity study

- Vary each input parameter in turn
 - source m, x, y, z, t
 - meteorology
 - turbulence
- Use synthetic environment to determine effect on output from range of possible sensors
 - CB sensors
 - meteorological sensors
3c) Sensitivity study

Identify inputs that have
- **little effect on sensor output**
 - neglect ⇒ simplify problem
- **correlations with other inputs**
 - retrieve dominant input
 - use knowledge of correlations to understand / estimate uncertainty in hazard prediction
- **large effect on sensor output**
 - apply short-listed techniques to retrieve these inputs
3d) Implementation in synthetic environment

- It is essential to test the short-listed techniques in a realistic synthetic environment
 - meteorological forecasts subject to significant error
 - 30° error common
 - experimental concentration profiles show strong effects of turbulence
 - no sensor is perfect

Measured effects of turbulence
3d) Implementation in synthetic environment

- It is essential to test the short-listed techniques in a realistic synthetic environment
 - meteorological forecasts subject to significant error
 - 30° error common
 - experimental concentration profiles show strong effects of turbulence
 - no sensor is perfect
Synthetic environment

- Dstl’s synthetic environment includes:
 - model of meandering puffs
 - UDM
 - model of turbulence within puff
 - realistic sensor models
 - biological background model
 - Monte Carlo variation of model parameters

Spray of NADH in water solution (0.642% concentration)

Analysis of data for biological sensor model
Future plans

• Completion of sensitivity study
 – what information do we attempt to retrieve?

• Test short-listed techniques in synthetic environment for chemical, then biological releases
 – Biological data fusion complicated by fluctuating biological background
 – quantitative metrics (A_{FN}, A_{FP})
Biological sensor fusion

- Biological sensor model

Simple particle counter sensor

- Low fidelity, analogue signal

Immuno-Assay detector

- High fidelity, digital (2 state) signal

Conclusion: Information requirements differ depending on decision to be made

Try to explain better