

Lightweight Small Arms Technologies

(Formerly known as...Lightweight Machine Gun and Ammunition)

NDIA International Infantry & Joint Service Small Arms Systems Annual Symposium May 2005

Kori Spiegel Joint Service Small Arms Program (973) 724-7944 kspiegel@pica.army.mil

Paul Shipley AAI Corporation (410) 628-3462 shipley@aaicorp.com

<u>Goals:</u>

- 35% weapon weight reduction
- 40% ammunition weight reduction
- Reduced training & maintenance
- Maintain cost of current systems

Approach:

- "Clean Slate" design
- Reduced weight as the priority
- In depth trade studies
- Extensive modeling & simulation

Focus on Technology Enablers

- Ammunition design
 - Cased Telescoped
 - Caseless Telescoped
- Weapon design
 - FEA for strength
 - Thermal analysis
- Reduced training & maintenance
 - Simpler designs and reduced parts count
 - Early inclusion of supportability considerations
- Maintain cost of current systems
 - Minimize use of "exotic" materials
 - Cost included in trade offs

Program Status

- System Integration Contracts Awarded April 2004
 - AAI Corporation of Hunt Valley, MD
 - General Dynamics Armament and Technology Products of Burlington, VT
- Phase 1 Design Phase
 - 9 months long, virtual prototyping of weapons & ammunition
 - Downselected to AAI Corp. concept in February 2005
- →Phase 2 Develop, Fabricate & Test Phase
 - Continue development and fabricate subcomponents
 - Subcomponents and ammunition will be tested
 - System integration planning and preliminary testing
- Phase 3 System Integration Test Phase
 - Testing will encompass all Milestone B requirements
 - Completed at end of FY07

Company Machine Gun

- Determine Feasibility of "Company Machine Gun"
 - Medium Machine Gun performance in Light Machine gun "package"
 - Initial study underway to identify optimum caliber
 - Results will be modeled to determine impact on weapon design
- Methodology
 - Compile Light and Medium Machine Gun performance data
 - Conduct analysis using empirical equations
 - Determine smallest caliber that meets penetration and KE requirements at range
 - Conduct Hydro code modeling to validate selection

AAI Team

Related Activities

- ARDEC In-House Caseless Ammunition program (H&K/DN)
- CRADA with ARDEC- H&K/DN Propellant characterization
- Johns Hopkins Applied Physics Lab- Interior Ballistics Modeling
- ARL cartridge case and barrel material programs
- JSSAP BAA Component Contracts

Parallel Cased and Caseless Technology Select Single Concept for Phase 3

Supportability Integrated with Design/Test Activities

System Tradeoff Considerations

Key Tradeoff Parameters

- Lethality
- Supportability
- Interfaces
- Operating System
- Scalability
- Integration of Electronics
- Cased/Caseless Commonality

Virtual Design Activities

- 3D CAD Models
- Structural Analyses
- Thermal Analyses
- Kinematic Analyses
- Rapid Prototype Models
- Supportability Analyses

Selected Approach

- •Telescoped Ammunition
- •5.56mm caliber, M855/856 bullets
- •Rotating Chamber
- •650 rds/min, Belt Feed
- •Maximize CT/CL Commonality

System Design Overview

Weapon Operating System Approach

Weapon and ammo designed as a system

- Rotating chamber
- Straight-thru feed and ejection
- Gas operated
- Provides positive control of all motion including ejection
- Isolates chamber from barrel heat
- Eliminates need for extractor groove in cartridge
- Allows common CT/CL approach

Weapon Features

Key Tradeoff Parameters

Cartridge Configuration

- Full Case
- Hybrid/Combustible Case
- Full Caseless
- Bullet Interface

Propulsion Approach

- Propellant Chemistry
- Propellant Packaging
- Primer

Virtual Design Activities

- 3D CAD Models
- Structural/Dynamic Analyses
- Interior Ballistics Analyses
- Supportability Analyses
- Limited Firing Tests to Validate Key Models

Selected Approach

- •Length Based on M856 Tracer Bullet
- •Common CT/CL Cartridge Length
- •CT- Full Polymer Case Configuration
- •CL- High Ignition Temperature

Propellant (HITP)

Ammunition Features

Cased Configuration

- Conventional technology in telescoped configuration
- Significant weight reduction
- Lower Risk

Caseless Configuration

- High Ignition Temperature
 Propellant Technology
- Higher Weight Reduction
- Higher Risk

Summary

- System design meets all program requirements and exceeds many
 - Exceeds weight goals
 - Improves lethality
 - Improves logistics
 - Improves ergonomics
 - Maintains comparable production costs
- Maintaining parallel, synergistic Cased Telescoped and Caseless development plan
 - Emphasizes commonality
 - Reduces program risk
- Scalable design provides significant modularity and commonality
- Cohesive Government/industry team ensures success in development, user acceptance, and production

Comments/Questions?