Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

Patricia M. O’Reilly, ARDEC
Erin Hardmeyer, ARDEC
Chad Sensenig, ARDEC
Ben Ashcroft, ATK – Thiokol
Dave Cleveland, JHU/APL
Bo Engel, AAI Inc
Paul Shipley, AAI Inc
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

• Objective
 – To re-establish, develop, and demonstrate a capability to manufacture Caseless Ammunition prototypes and characterize the High Ignition Temperature Propellant
 – In support of the Lightweight Machine Gun and Ammunition Science & Technology Objective, deliver Caseless Ammunition for a ballistic demonstration
 – Transfer technology to industry
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

• Why Caseless Ammunition?
 – Lightweight
 – Force Multiplier
 – Decreased Logistics Burden
 – High Ignition Temperature Propellant (HITP) Provides Improved Propellant Characteristics & Energetic Behavior
 – The State of the Art
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

Overall Program Requirements

Threshold requirements (“must haves”)
- 35% Decrease in ammunition weight
- Same lethality as the 5.56mm M855 cartridge
- Environmentally friendly ammunition and process
- Low life-cycle costs

Extra requirements (“nice to haves”)
- 40% decrease in ammunition weight
- Increased lethality over the 5.56mm M855 cartridge
- Same cost/round as current 5.56mm M855 ammunition
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

Why Use an HITP?

• Brass is a heat sink that is discharged with each round fired and provides structural strength

• Caseless ammo will not have a heat sink through mass discharge
 – HITP will need to provide significantly more insulation and thermal stability than typical ball powders
 – HITP will also need high degree of structural stability and maintain tolerances over operational temperature ranges

• Integration of this technology requires a system approach to be successful
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

• Background
 – Previous work performed under the Advanced Combat Rifle (ACR) Program
 – Technology Development funded by US (ARDEC) and Germany to Heckler & Koch(H&K)/Dynamit Nobel(DNAG)
 – Successful Demonstration of a Caseless Ammunition Rifle System
 – Technology Licensed & Transferred to the US at ARDEC
G11 Open Source Data

<table>
<thead>
<tr>
<th>Caseless ammunition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>33 mm/1.29 in.</td>
</tr>
<tr>
<td>Cross-section</td>
<td>8 x 8 mm/0.32 in.</td>
</tr>
<tr>
<td>Total weight</td>
<td>5.20 g/0.18 oz.</td>
</tr>
<tr>
<td>Projectile weight</td>
<td>3.25 g/0.12 oz.</td>
</tr>
<tr>
<td>Ignition</td>
<td>Mean gas pressure</td>
</tr>
<tr>
<td></td>
<td>Muzzle velocity V_0</td>
</tr>
<tr>
<td>Ignition mechanism</td>
<td>mechanical</td>
</tr>
<tr>
<td>Ignition pressure</td>
<td>3850 bar</td>
</tr>
<tr>
<td>Ignition velocity</td>
<td>approx. 930 m/sec.</td>
</tr>
<tr>
<td>Ignition velocity</td>
<td>3051 ft./sec.</td>
</tr>
</tbody>
</table>

Components of a 4.73 x 33mm Caseless Round: Plastic Cap, Projectile, Propellant Body, Booster, Primer.
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

5.56mm Caseless Prototypes

Original Caseless Ammunition

5.56 mm LMGA Concept
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

• Technical Approach
 – Determine Feasibility
 • Identify and address technical challenges/potential risk areas
 – Near term & long term
 • Material needs and source suppliers - availability
 • Assess equipment condition
 • Costs
 – Determined viability → Organizational Commitment
 – Re-establish capability and prototyping process utilizing existing technology
 • Validation of In-house Caseless Ammunition capability in a 5.56mm cartridge configuration in support of the Lightweight Machine Gun and Ammunition STO
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

• Characterization of HITP
 – Original Caseless HITP and ARDEC HITP
 • Chemical analysis of original caseless HITP (NMR, HPLC & GPC)
 • Propellant density
 • Thermal stability
 • Heat of Explosion
 • Hazards analysis – friction, impact and ESD

• Demonstrate Producibility
 – Several hundred rounds have been produced from lab-scale propellant mixes

• Deliver Ammunition for testing
 – Conducted three ballistic firings in Mann Barrel @ ATF

• Transfer Technology to Industry
 – CRADA established with AAI
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

Caseless Firings

• Test Firing I
 – Five Shots
 – Chamber Pressure (8190-11314 psi)
 – Muzzle Velocity (589-1204 fps)

• Test Firing II (Addition of Booster Charge)
 – 12 Shots
 – Chamber Pressure (14372-62225 psi)
 – Muzzle Velocity (1489-2795 fps)

• Test Firing III
 – 14 Shots
 – Chamber Pressure (15992-24579 psi)
 – Muzzle Velocity (1000-1686 fps)
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

• Status of Progress
 – Next Steps
 • Continuing Characterization
 • Continue to manufacture qty of prototypes
 – Implementation of any processing improvements/fixes
 • Continue ballistic testing
 • Deliver prototypes for ballistic demonstration
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

- Technical Challenges being addressed as technology is transitioned:
 - Long term availability and identification of source suppliers
 - Material replacements
 - Environmentally friendly alternatives/manufacturing processes for constituents
 - Manufacturing process
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

• Summary
 – Three Ballistic Test Firings
 – Validation of the in-house capability proceeding
 – Efforts focused to bring Caseless Ammunition Capability/Technology to a sufficient maturation level for transfer to industry
 – Potential applications in other caliber ammunition as the propulsion charge
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

Status of JHU/APL Modeling

• IBHVG2 Model developed
 – HITP burn data
 – Single perf grain
 – ACR/G11 IB sequence recreated

• Reasonable results given limited data
 – Pressure & velocity close
 – Sensitivity analysis generally consistent

• Model will be updated as better data becomes available
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

ATK – Phase II Contractor for CL Propellant

- H&K’s propellant used as a foundation
- ATK Thiokol’s energetic thermoplastic elastomer (ETPE) gun propellant experience will provide processing and modeling experience
- Propellant options
 - HITP recreation of DNAG propellant
 - HITP development of new binder and combination of energetic ingredients
 - ETPE with insulating layer
 - LOVA with insulating layer
 - Consolidated ball powder with insulating layer
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

Concept Model

• Critical Assumptions:
 – Surface area of consolidated ball powder
 – Burning rate of HITP insulating layer

• The system was modeled as shown here:

![Diagram of Concept Model]

Preliminary IB Modeling

\[P_{\text{max}} = 55000 \text{ psi} \]

![Graph showing relationship between Muzzle Velocity, Core Prop Grain Dia, and Frac of Outer Layer burned at time of Inner Core Ignition]
Caseless Ammunition & Advances in the Characterization of High Ignition Temperature Propellant

Future Work

• Determine optimum propellant formulation
• Develop process for low-rate production of caseless rounds
• Deliver ammunition for testing and evaluation
• Scale-up process for pilot-scale ammunition production