Software Size Growth and Uncertainty:
Both Affect Estimate Accuracy

Presented by:
Mike Ross, Chief Engineer
Galorath Incorporated
100 North Sepulveda Boulevard
Suite 1801
El Segundo, California 90245
480.488.8366 (o) 480.488.8420 (f)
mross@galorath.com
Summary

- Measurement objectifies management
- Estimation is a function of progress (continuous process)
- A well-formed estimate is specified as a probability distribution

Uncertainty
- Variability
- Risk
- Opportunity

Software size estimates
- Size growth
- Size estimation variability
Fundamental Measures

Size
Effective Technology
Time
Effort ➔ Cost, Staffing
Defects
Estimate Defined

es·ti·mate (es'ti mit), n.

an approximate judgment or calculation, as of the value or amount of something

a prediction that is equally likely to be above or below the actual result (Tom DeMarco)

A WELL FORMED ESTIMATE IS A DISTRIBUTION
Two Key Drivers of Software Size Estimates

Size Growth

- Change in the baseline estimated software size due to:
 - Change in development and/or operating environment
 - Change in the required functionality
- Technological and Programmatic risk

Size Estimation Variability

- Estimation process variability due to:
 - Human behavior
 - Model behavior
Size Growth

- **Operational Environment Volatility**
 - The mission changes.
 - The regulations that govern how this software should behave have changed.

- **Essence (Requirements) Volatility**
 - The customer doesn’t know what he/she wants.

- **Essence Understanding (Requirements Completeness and Correctness)**
 - The customer doesn’t understand the problem.
 - The specifications are vague.

- **Essence versus Implementation Correspondence**
 - The vendor adds a few extra features (gold plating).
Growth Factor Function

- Yields Growth Factor as a function of normalized earned value
- Based on Galorath Incorporated analysis of historical data
- Embedded in SEER-SEM™’s Phase at Estimate parameter

\[G(s) = -0.7s + 0.69 \]
Growth Factor Function Distribution

- Triangular Distribution per (Book 2002)
- Skew per modified (Tarbet 2002)

\[G(s) = [L \ M \ H] = \begin{bmatrix} 0 & 0 & G(s) \end{bmatrix} \]
Size Growth
Impact Distribution

- Function of normalized earned value (progress)
- Product of best guess size and growth factor
- Triangular Distribution per (Book 2002) from growth factor
- Skew per (Tarbet 2002) from growth factor

\[S_G(s) = S_M(s)G(s) = \begin{bmatrix} 0 & 0 & S_M(s)G(s) \end{bmatrix} \]
Assume a best guess size at SRR of 50,000 ESLOC
Assume normalized earned value of 11.8% at SRR

\[
G_{SRR} = G(11.8\%) = -0.7(11.8\%) + 0.69 = 0.61
\]

\[
S_{G_{SRR}} = \begin{bmatrix} 0 & 0 & S_{M_{SRR}}(0.61) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 30,500 \end{bmatrix}
\]
PDF

Probability Density versus Software Size

- X-axis: Software Size (effective source statements)
- Y-axis: Probability Density

- Probability density decreases as software size increases.
CDF

Confidence Probability versus Software Size

Confidence Probability

Software Size (effective source statements)
Size Estimation Variability

- Uncertainty about the translation of essence to implementation
- Error and bias introduced by the estimation process
- Error and bias introduced by the estimation model / relationships
- Error and bias introduced by the people performing the process
Function of normalized earned value (progress)
Normal (Gaussian) Distribution per (Book 2002)
Variance per (Tarbet 2002)

\[S_{EV} = \begin{bmatrix} \mu \\ \sigma \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{(30\%)S_M}{(2)(2.33)} \end{bmatrix} = \begin{bmatrix} 0 \\ 3,219 \end{bmatrix} \]
Assume a best guess size at SRR of 50,000 ESLOC

\[
S_{EV_SRR} = \begin{bmatrix} 0 \ (30\%) S_{M_SRR} \end{bmatrix} = \begin{bmatrix} 0 \ 3,219 \end{bmatrix}
\]
Size Estimation Variability
Example PDF

PDF
Probability Density versus Software Size

© Galorath Inc. 2005
All Rights Reserved
October 24, 2005
17
Size Estimation
Example CDF

CDF
Confidence Probability versus Software Size

Confidence Probability

Software Size (effective source statements)
Combining Size Growth and Size (Estimate) Uncertainty

- The mean of the sum of a set of random variables is equal to the sum of the means of each random variable in the set.
- The standard deviation of the sum of a set of independent random variables is equal to the square root of the sum of the squares of the standard deviations of each random variable in the set.

\[
E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)
\]

\[
V\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} V(X_i)
\]
Combining Size Growth and Size (Estimate) Uncertainty

Sum of the means:

\[
\mu_{S_M(s)} = S_M(s)
\]

\[
\mu_{S_G(s)} = \frac{0 + 0 + S_M(s)G(s)}{3} = \frac{S_M(s)G(s)}{3}
\]

\[
\mu_{S_{EV}(s)} = 0
\]

\[
\therefore \mu_{S(s)} = S_M(s) + \frac{S_M(s)G(s)}{3} = \frac{S_M(s)(G(s) + 3)}{3}
\]
Combining Size Growth and Size (Estimate) Uncertainty

Square root of the sum of the squares of the standard deviations:

\[
\begin{align*}
\sigma_{SM(s)} &= 0 \\
\sigma_{SG(s)} &= \sqrt{\frac{L^2 + M^2 + H^2 - LH - LM - MH}{18}} = \sqrt{\frac{(S_M(s)G(s))^2}{18}} \\
\sigma_{SEV(s)} &= \frac{(30\%)S_M(s)}{(2)(2.33)} \\
\therefore \sigma_S(s) &= \sqrt{\frac{(S_M(s)G(s))^2}{18}} + \frac{(30\%)S_M(s)}{(2)(2.33)}
\end{align*}
\]
Example Calculation

- Assume a best guess size at SRR of 50,000 ESLOC
- Assume a growth factor at SRR of 0.61

\[
S_{SRR} = \begin{bmatrix}
\mu & \sigma \\
\end{bmatrix}
\]

\[
S_{SRR} = \left[\frac{S_{M_SRR} (G_{SRR} + 3)}{3} \right]
\]

\[
= \sqrt{\left(\frac{S_{M_SRR} G_{SRR}}{18} \right)^2 + \left(\frac{(30\%) S_{M_SRR}}{(2)(2.33)} \right)^2}
\]

\[
= \sqrt{\left(\frac{50,000 (0.61+3)}{3} \right)^2 + \left(\frac{(30\%) (50,000)}{(2)(2.33)} \right)^2}
\]

\[
: S_{SRR} = \begin{bmatrix}
60,167 & 7,877 \\
\end{bmatrix}
\]
PDF

Probability Density versus Software Size
Combined CDF

CDF

Confidence Probability versus Software Size

Software Size (effective source statements)

Confidence Probability

October 24, 2005
Measurement objectifies management

Estimation is a function of progress (continuous process)

A well-formed estimate is specified as a probability distribution

Uncertainty

- Variability
- Risk
- Opportunity

Software size estimates

- Size growth
- Size estimation variability