Interpreting the CMMI: It Depends!

CMMI Technology Conference & User Group
14-17 November 2005

Rick Hefner, Ph.D.
Northrop Grumman Corporation

Sree Yellayi
Siemens Corporate Research
Background

- Many organizations struggle with finding practical implementations of the CMMI model
 - How does practice _____ apply to my time and materials contract?
 - How can a small project perform practice _____?
 - Is this evidence enough for practice _____?

- The expert answer is frequently – it depends!

- This presentation will show how to interpret the model in a variety of contexts, including small projects, maintenance efforts, and time and materials contracts
Interpretation – The Dictionary Meaning

- To explain or tell the meaning of
- To present in understandable terms
- To conceive in the light of
 - individual belief
 - judgment
 - circumstance
Why Do Interpretation Issues Arise?

- The CMMI model is a collection of industry best-practices
- These best-practices are based on an assumed project and organizational context
 - These practices must be adapted for other situations

<table>
<thead>
<tr>
<th>Small projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short projects</td>
</tr>
<tr>
<td>Maintenance projects</td>
</tr>
<tr>
<td>Research & development (internal) projects</td>
</tr>
<tr>
<td>Time and materials contracts</td>
</tr>
</tbody>
</table>

- To better understand/interpret a practice:
 - Review Process Area introductory material and Goals to understand the purpose of the process
 - Seek guidance from someone who has implemented that practice in your context
 - Understand the fundamental principles behind the practice
Do You Have an Open Mind?

- Some practitioners want to believe the model does not apply to their situation
 - If it doesn’t apply to me, I don’t have to do it!
- Adopting the model means learning new ways of performing
 - Must be willing to embrace new ideas, conceive that other’s approaches may be better than yours
Underlying Principles of CMMI

1. Process discipline leads to predictable project performance
 - Say what you do; do what you say
 - Document the plans/processes
 - Communicate them to the performers and stakeholders
 - Audit to ensure we are following them

2. Conscious choices lead to better processes
 - E.g., identify relevant stakeholders and their involvement; identify work products to be controlled and the control method; define validation procedures and criteria, …

3. Organizational learning improves project performance
 - Capture what works, and what doesn’t
 - Make rules (policies) to guide projects
 - Define expected processes, and let projects tailor them to fit
 - Capture work products and measures, and learn from them
Small Projects

- All the CMMI practices typically apply, but must be performed in a highly efficient manner
 - Focus on discipline, not bureaucracy

- With smaller projects
 - Communication/coordination is simpler
 - It is more tempting (but more dangerous) to abandon discipline
 - The ability to divert staff to recover from mistakes is often less

- Examples of interpretations
 - Plans/processes may be less detailed, less formal
 - “Configuration Control Board” may simply be the project manager
 - Peer review may be a “buddy check” by a single individual
Short Projects

- “A ‘project’ is a managed set of interrelated resources that delivers one or more products to a customer or end user…. A project can be composed of projects.”

- Proper application of CMMI involves proper definition of “project” to fit the work
 - Modern contracts create tasks of various sizes and scopes
 - Some are too short/small to fit the CMMI definition of “project”
 - These tasks can be grouped together to better fit the CMMI context of “project”

- Process discipline benefits longer projects by reducing the risk that something will go wrong over time
 - Shorter projects have to focus on doing things right the first time, since little time is available for recovery
Maintenance Projects

- The term “development” in CMMI does not exclude maintenance
- The Engineering process areas often need to be interpreted in a smaller scope
- Example
 - A problem in the field requires a “bug fix”
 - The engineer explores whether the product is broken or has unanticipated new requirements (Requirements Development, Requirements Management)
 - Potential changes to the design are considered (Technical Solution)
 - The fix is incorporated (Product Integration), regression tested (Verification) and deployed to the field
Research and Development Projects

- Some organizations exclude R&D/internal projects from their CMMI initiative
- If you believe that CMMI is the fastest, cheapest way to develop a product, why wouldn’t you use it everywhere?
- Guidance about small/short projects applies
Time and Materials Contracts

- CMMI applies to any kind of work, but….

- Adopting the CMMI assumes the project has the autonomy to perform the work in the best possible way
 - I.e., can define their own process

- Sometimes the customer sets limits on cost and schedule
 - Projects can still meet the CMMI (e.g., Project Planning), but must adjust the work to fit the cost and schedule available
 - Process discipline means you do not agree to a scope of work you cannot hope to perform

- Sometimes the customer defines the process to be used
 - These processes may or may not comply with the CMMI (i.e., include the industry best practices required to perform efficiently and effectively)
 - Can advise the customer on the success of your proven processes and the value of CMMI practices
Summary

- Many organizations struggle with finding practical implementations of the CMMI model

- You can determine how to interpret the CMMI by:
 - Keeping an open mind
 - Reviewing Process Area introductory material and Goals to understand the purpose of the process
 - Seeking guidance from someone who has implemented that practice in your context
 - Understanding the fundamental principles behind the practice
Contact Information

Sree Yellayi
Siemens Corporate Research
755 College Road East
Princeton NJ 08540
609-734-6583
sree.yellayi@siemens.com

Rick Hefner, Ph.D.
Northrop Grumman Corporation
One Space Park - R2/2144
Redondo Beach CA 90278
310-812-7290
rick.hefner@ngc.com