The ROI of CMMI: Using Process Simulation to Support Better Management Decisions

David M. Raffo, Ph.D.
Visiting Scientist, Software Engineering Institute
Associate Professor, Portland State University

Sponsored by the U.S. Department of Defense
© 2005 by Carnegie Mellon University
Acknowledgements

Portions of this tutorial are reprinted and presented with the permission of Portland State University.
Introductions and Logistics
Introductions

Workshop leader introductions

Participant introductions
 • Name
 • Position
 • Expectations
 - What do you want to get out of the workshop?
 - Do your expectations match the workshop agenda?
Logistics

Workshop time/duration

Rest Rooms

Breaks

Smoking Rules

Phones

Messages
Workshop Approach

Lecture/presentation

Examples

Ask questions

Participate!!!
Audience

- Executive/leaders of organizations seeking to understand
 - The costs/benefits of CMMI-based process improvement
 - How to quantify them
 - How simulation can help them achieve higher CMMI levels
- Executives/leaders seeking to benchmark their processes and performance with industry
- Process improvement/EPG personnel seeking ways to communicate more effectively to senior management about the costs/benefits of CMMI-based process improvement
- Personnel seeking to transition to the CMMI, or implement higher-maturity process areas
- Personnel working to define process and estimate performance based upon quantitative measurements.
Overview

Process simulation is a high leverage way to determine which process improvement opportunities are likely to have the best outcome.

Goals of the tutorial:
• Familiarize participants with Process Simulation – What, Why, How
• Show participants how to utilize simulation results to support process improvement decisions

This tutorial will focus on one simulation method – the Process Tradeoff Analysis Method (PTAM) and will briefly touch on others.
Overview

The tutorial is not intended to be comprehensive, some topics are presented at a high-level only.

No knowledge of simulation or finance is assumed.
Agenda

1. Introduction: What is Process Simulation?
3. Overview of Process Simulation Alternatives
4. How do we build process simulation models?
5. Process Tradeoff Analysis Method (PTAM)
7. Wrap-Up/ Conclusions
1 – Introduction: What is Process Simulation?
What Is a Simulation Model?

• A simulation model is a computerized model (*not a maturity model*) designed to display significant features of the dynamic system it represents.

• Simulations are generally employed when
 - behavior over time is of particular interest or significance, and
 - the economics or logistics of manipulating the system being modeled are prohibitive

• Common purposes of simulation models are:
 - to provide a basis for experimentation,
 - to predict behavior,
 - to answer “what if” questions,
 - to teach about the system being modeled.
Process Simulation Models

• Process simulation models focus on the dynamics of software and systems development, maintenance and acquisition.
• They represent the process
 - as currently implemented (as-is, as-practiced, as-documented), or
 - as planned for future implementation (to-be)
• The models represent only selected relevant aspects of a defined process.
Simulation Features

• Use Graphical interfaces
• Utilizes actual data/ metrics
• Predict performance
• Supports “What if” Analyses
• Support business case analyses
• Reduces risk
Many choices. Which one(s) to choose?

Need to focus efforts to be successful.

Process Simulation Evaluate Impact on Process Performance

Set of Potential Process Changes

Company Strategy
Competitive Advantage
Customer Value

Improving Operations
Industry Standards
CMMI, Six Sigma, ISO

Performance Measures
Cost, Quality, Schedule

Financial Benefits - NPV, ROI

Which change will provide the greatest improvement?

What is the financial impact?
2 – Motivation: Why Do Process Simulation?
Benefits of Process Simulation

<table>
<thead>
<tr>
<th>Option</th>
<th>Project</th>
<th>Total Effort (PM) Dev Eff + Dev Rwk</th>
<th>Rework Effort Dev defects (PM)</th>
<th>Project Duration (Calendar Months)</th>
<th>Projected Cost or Revenue delta due to Duration Change</th>
<th>Total Injected Defects</th>
<th>Corrected Defects</th>
<th>Escaped Defects</th>
<th>Rework Effort for Field Defects (PM)</th>
<th>Implementation Costs ($)</th>
<th>NPV</th>
<th>ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base Case</td>
<td>200</td>
<td>90</td>
<td>18</td>
<td>$0.00</td>
<td>1150</td>
<td>990</td>
<td>160</td>
<td>40</td>
<td>$0.00</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>1</td>
<td>Implement QFD</td>
<td>190</td>
<td>75</td>
<td>17.5</td>
<td>$0.00</td>
<td>1150</td>
<td>1020</td>
<td>130</td>
<td>30</td>
<td>$100,000</td>
<td>$165,145</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>Implement VOC</td>
<td>185</td>
<td>75</td>
<td>17</td>
<td>$100,000</td>
<td>1150</td>
<td>1050</td>
<td>100</td>
<td>20</td>
<td>$120,000</td>
<td>$185,231</td>
<td>29%</td>
</tr>
<tr>
<td>3</td>
<td>Add QuARS Tool</td>
<td>175</td>
<td>65</td>
<td>16</td>
<td>$300,000</td>
<td>1150</td>
<td>1090</td>
<td>60</td>
<td>10</td>
<td>$80,000</td>
<td>$289,674</td>
<td>88%</td>
</tr>
<tr>
<td>4</td>
<td>Eliminate</td>
<td>230</td>
<td>130</td>
<td>22</td>
<td>$(400,000)</td>
<td>1150</td>
<td>900</td>
<td>250</td>
<td>80</td>
<td>$0.00</td>
<td>-$378,043</td>
<td>-129%</td>
</tr>
<tr>
<td>5</td>
<td>Additional Process</td>
<td></td>
</tr>
</tbody>
</table>
Benefits of Process Simulation

• Decision Support and Tradeoff Analysis
• Sensitivity Analysis – “What if”
• Supports Industry Certification and process improvement programs including CMMI, Six Sigma, and others
• Benchmarking
• Design and Define Processes/Metrics
• Bring Lessons Learned Repositories Alive
• Can save cost, effort, and expertise
• Can be used to address project manager concerns such as….
Software Project Manager Concerns

• What development phases are essential?
• Which phases could be skipped or minimized to shorten cycle time and reduce costs without sacrificing quality?
• Are inspections worthwhile?
• What is the value of applying automated tools to support development activities?
• How do we predict the benefit associated with implementing a process change?
• How do we prioritize process changes?
• How to achieve higher levels of the CMMI?
• What is the level of Risk associated with a change?
3 – Overview of Alternative Process Simulation Approaches
Alternative Process Simulation Approaches

Modeling Paradigms
• Knowledge-Based Systems
• Agent Based
• State-Based
• Discrete Event
• System Dynamics
• Hybrid

Research Outlets
• Software Process: Improvement and Practice
• Journal of Systems and Software

• Tools
 – Arena
 – ProModel
 – Extend
 – Stella
 – VenSim
 – Research tools

• Conferences
 – Winter Simulation Conference
 – ProSim
 – SEPG
 – SSTC
Alternative Process Simulation Approaches

Knowledge Based Systems
• Person-in-the loop
• Fine level of granularity
• Supports process enactment

Agent Based Systems
• Fine level of granularity
• Supports detailed work interactions

State Based Systems
• Captures flow of control (work activities, parallelism) well
• Multi-view graphical representations
• Difficult to capture task, work package and resource details
Alternative Process Simulation Approaches

Discrete Event Simulation
- Able to represent richness of processes, work packages and resources
- Good for modeling quantitative process performance
- Good tool support

System Dynamics
- Captures feedback well
- Often used for high level qualitative issues

Hybrid
- Captures best aspects of Discrete Event and System Dynamics
- Models are complex
- Being used to predict performance of multi-site development
Common Applications of Each Approach

<table>
<thead>
<tr>
<th></th>
<th>STRAT</th>
<th>PLAN</th>
<th>MGMT</th>
<th>IMPR</th>
<th>UNDR</th>
<th>TRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Agent Based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>State-Based</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Discrete Event</td>
<td>x</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>System Dynamic</td>
<td>X</td>
<td>x</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hybrid</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
4 – How to Build Process Simulation Models
How it works

Software Development Process

Best Process Decisions

Process Performance Cost, Quality, Schedule

Better Process Decisions

SW Process Simulation Model
Process Tradeoff Analysis Method (PTAM)

- Based on extensive research into Software Process Modeling conducted in academia, SEI and industry.
- Graphical user interface and models software processes
- Integrates SEI methods to define processes and supports CMMI PAs
- Integrates metrics related to cost, quality, and schedule into understandable project performance picture.
- Predicts project-level impacts of process improvements in terms of cost, quality and cycle time
- Support business case analysis of process decisions - ROI, NPV and quantitatively assessing risk.
Process Tradeoff Analysis Method (PTAM)

- **Reduces risk** associated with process changes by predicting the probability of improvement
- **Saves time, effort and expertise** over other methods
5 – The Process Tradeoff Analysis Method (PTAM)
Process Tradeoff Analysis (PTA) Method

Company Strategy
Competitive Advantage
Customer Value

Improving Operations
Industry Standards
CMM, ISO 9000

Set of Potential Process Changes

Process Simulation
Evaluate Impact on Process Performance

Many choices. Which one(s) to choose?

Need to focus efforts to be successful.

Performance Measures
Cost, Quality, Schedule

Which change will provide the greatest improvement?

What is the financial impact?

Financial Benefits - NPV, ROI
Overview of PTAM

Set-up Phase
• Set the Goal of the Modeling Effort
• Specify Questions for the Model to Address
• Define Process Performance Measures
• Identify Input Parameters

Gather Information
Modeling Phase
Analysis Phase
Set-up Phase

What decision(s) am I trying to make?

What questions does management have?

What do I need to know to answer the questions?

What information should we collect?

Goal
Major Objective(s) for model

Questions
Define key questions to address

Performance Measures
Metrics/Model Outputs designed to address key questions

Input Data
Data and information needed to calibrate and estimate performance measures
Overview of PTAM

• Set-up Phase
 - Set the Goal of the Modeling Effort
 - Specify Questions for the Model to Address
 - Define Process Performance Measures
 - Identify Input Data

• Gather Information
• Modeling Phase
• Analysis Phase
Why Simulate?

• There are a variety of reasons / purposes for undertaking process simulation.

• CMMI-Based Process Improvement
 - Strategic management
 - Planning
 - Control and operational management
 - Technology adoption
 - Understanding
 - Training and learning
CMMI Based Process Improvement

CMMI Levels 4 and 5
• Process simulation helps to fulfill PAs (OID, CAR, OPP and QPM - Sub Goals and Generic Goals)

CMMI Levels 2 and 3
• Process simulation can be used to evaluate alternative process choices (RD, TS, PI, V&V, RM, SAM, PPQA, and CM)

• Process simulation helps to fulfill PAs (OPF, OPD, OT, IPM, Risk, DAR, PP, PMA, MA, PPQA – Multiple Sub Goals and Generic Goals)
Case Study: Organizational Setting

• Leading software development firm
• Peak staffing of 60 developers on project
• Assessed at strong Level 2 of CMM/CMMI
• Experienced development staff
• 5th release of commercial project
• Data available in electronic and paper form: quantitative and qualitative; professional estimates used to fill in gaps
• Active SEPG
Case Study: Validation and Verification

• Problem: Releasing defective products, had high schedule variance.
• Why? Unit Test was main defect removal stage. They did it unreliably.
• Built a model of Large-Scale commercial development process
• Based on actual project data
• Predicted project performance in terms of effort, task duration and delivered defects.
• Part of a full business case analysis - determined financial performance of the process change
Process Overview - 1

Diagram of the Field Study Life Cycle AS-IS Process

Tasks Affected By Process Change

Project is Approved

Development Complete

Release to Customers

Functional Test

Field Support and Maintenance

Functional Test Plan

Test Case

Test Case Inspection

Unit Test Execution

Unit Test Complete

Release to Customers

System Test

Field Support and Maintenance

Tasks Affected By Process Change

Func Spec

HL Design

LL Design

Code

Test Plan

Test Case
Process Overview - 2

- Begin Code Development
- Code Development is Complete
- Code Inspection is Complete
- Code Dev
- Code Insp
- Unit Test Execution
- Create Unit Test Plans
- Conducted during Code Development
- Prep, Insp, and RWK UT Plans
- Followed while conducting Unit Test
- Conducted as part of regular Code Inspection
- Unit Test Complete; Begin Functional Testing
- Follow UT Plan

Code Development is Complete
Code Inspection is Complete

Portland State
University
Overview of PTAM

• Set-up Phase
 - Set the Goal of the Modeling Effort
 - Specify Questions for the Model to Address
 - Determine Organizational Scope
 - Define Process Performance Measures
 - Identify Input Data

• Gather Information
• Modeling Phase
• Analysis Phase
Specify Questions

• Based upon the goal/ purpose of the simulation model, specific management questions can be identified
• Questions should point to specific answers that management would like to obtain
• It should be recognized that the model may not be able to answer or even address all of the questions.
• The questions should document the full scope issues and information that need to be incorporated into the decision making process
• Questions document the use case
Example Questions

• What is the optimal V&V strategy for a specific project? For our organizational process?
• Would it be better to use Requirements process “A” or “B” for this new project?
• What combination(s) of V&V techniques enable us to meet or exceed the quality goals for the system? Which alternative is best?
• Given a budget of “X” dollars, what V&V activities should be conducted?
• What is the value of applying automated tools to support development activities?
• What is the level of Risk associated with a change?
Case Study: Questions Investigated

• Will the process change improve project performance?
• What is the cost the firm is currently paying by conducting Unit Tests incorrectly?
• Is partial implementation of the proposed process change possible?
• How would potential learning curve effects affect the performance of the process change?
• Would alternative process changes offer a greater improvement?
• Can the project benefit from reusing process artifacts?
Overview of PTAM

• Set-up Phase
 - Set the Goal of the Modeling Effort
 - Specify Questions for the Model to Address
 - Define Process Performance Measures
 - Identify Input Data

• Gather Information
• Modeling Phase
• Analysis Phase
Define Process Performance Measures

- Main output measures of the simulation
- Should capture management interests and interests of engineers responsible for implementing the process changes.
- Must enable the questions to be answered
- Helps focus data collection and modeling efforts.
- Should be defined as early as possible on the project
Examples of Common Performance Measures

Typical performance measures include the following:
• effort / cost
• cycle-time (a.k.a. interval, duration, schedule)
• defect level
• staffing requirements
• staff utilization rate
• cost / benefit, return on investment
• throughput / productivity
• queue lengths (backlogs)
Case Study: Performance Measures

Cost
• Person-Months of Development, Inspection, Testing and Rework effort
• Equivalent Manpower (Staffing levels)
• Implementation costs

Quality
• Number of delivered defects by type

Schedule
• Months of Effort
Overview of PTAM

• Set-up Phase
 - Set the Goal of the Modeling Effort
 - Specify Questions for the Model to Address
 - Define Process Performance Measures
 - Identify Input Data

• Gather Information
• Modeling Phase
• Analysis Phase
Input Data (1 of 2)

• Input data are used to predict the performance measures.

• Can be derived from the organization
 - Current baseline
 - Exemplary projects
 - Pilot data

• Can also be derived from
 - Expert opinion
 - Industry data from comparable organizations

• Best judgments to describe the state of your organization
Input Data (2 of 2)

Examples:
- process documents and assessments
- amount of incoming work
- effort based on size (and/or other factors)
- defect detection efficiency
- effort for rework based on size and number of defects
- defect injection, detection and removal rates
- decision point outcomes; number of rework cycles
- hiring rate; staff turnover rate
- personnel capability and motivation, over time
- resource constraints
- frequency of product version releases
Case Study: Input Data

- CMM Level 2+ organization
- Process documents and assessments
- Project Size
- Productivity
- Earned Value by phase
- Total number of defects removed
- Defect injection, detection and correction rates
- Effort and schedule data
- Defect detection and rework costs
Overview of PTAM

• Set-up Phase
 - Set the Goal of the Modeling Effort
 - Specify Questions for the Model to Address
 - Define Process Performance Measures
 - Identify Input Data

Gather Information
 - Gather qualitative and quantitative data about processes and products from variety of sources in variety of forms

• Modeling Phase
• Analysis Phase
Overview of PTAM

• Set up phase
 - Set the Goal of the Modeling Effort
 - Specify Questions for the Model to Address
 - Define Process Performance Measures
 - Identify Input Data

• Gather Information

• Modeling Phase

• Analysis Phase
Process Models

- First, create the graphical model
- Quantitative portion of the simulation model can be theoretical or data driven
 - Data driven models analyze actual data from past projects using statistical techniques such as correlation coefficients and regression.
 - Theoretical models are independent of data (relationships)
- Process simulation can incorporate many kinds of analytical models (data driven or theoretical)
 - COCOMO, SLIM
 - Reliability
 - Other Regression, Queuing and others
Case Study: Build the Graphical Model

Diagram of the Field Study Life Cycle AS-IS Process

Related to the tasks affected by Process Change.
Case Study: Simplified Error Model

Errors injected in this phase

Perform Work

Verify Work

Rework Detected Errors

Errors detected (and removed)

Undetected errors from previous phase

Verification Efficiency = \frac{\text{Errors Detected}}{\text{Total Errors Present}}

Undetected errors to next phase
Linking Effort, Duration, and Staffing

- Effort*
 - Size (Input)
 - Productivity (Input)
 - Earned Value* (Input)
 - Detection and Rework Costs
- Project and Activity Duration*
 - Duration* (Input)
 - Task Offset* (Input)
 - Staffing* (Input)
- Equivalent Manpower*
Overview of PTAM

• Set up Phase
 - Set the Goal of the Modeling Effort
 - Specify Questions for the Model to Address
 - Define Process Performance Measures
 - Identify Input Data
• Gather Information
• Modeling Phase
• Analysis Phase
Analysis Phase

Once the model results are validated and viewed as being credible, they can be used to support decisions.

Major Steps

• Evaluate Baseline Process Alternatives
• Determine Tradeoff Rule(s)
• Conduct Sensitivity Analyses
• Select Alternative(s) for Implementation
Project Level Outputs – Which Alternative to Choose?

<table>
<thead>
<tr>
<th>CONFIG</th>
<th>Delivered Defects</th>
<th>Life Cycle Effort</th>
<th>Project Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>W W N N</td>
<td>13.4</td>
<td>51.72</td>
<td>17.81</td>
</tr>
<tr>
<td>F F N N</td>
<td>12.6</td>
<td>52.83</td>
<td>17.26</td>
</tr>
<tr>
<td>W W N W</td>
<td>9.1</td>
<td>48.79</td>
<td>14.92</td>
</tr>
<tr>
<td>W W W W</td>
<td>6.6</td>
<td>47.25</td>
<td>12.85</td>
</tr>
<tr>
<td>F F F F</td>
<td>3.3</td>
<td>48.60</td>
<td>12.11</td>
</tr>
</tbody>
</table>
Comparison by Mean Difference

<table>
<thead>
<tr>
<th>CONFIG</th>
<th>Reduced Defects</th>
<th>Reduced Effort</th>
<th>Reduced Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>W W N N</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>F F N N</td>
<td>0.80</td>
<td>-1.11</td>
<td>0.55</td>
</tr>
<tr>
<td>W W W W</td>
<td>4.34</td>
<td>2.92</td>
<td>2.89</td>
</tr>
<tr>
<td>W W W W</td>
<td>6.82</td>
<td>4.47</td>
<td>4.96</td>
</tr>
<tr>
<td>F F F F</td>
<td>10.18</td>
<td>3.12</td>
<td>5.71</td>
</tr>
</tbody>
</table>
Case Study: Baseline Comparison

REM_ERR = Number of remaining errors; TOT_DUR = Total project duration (in days);
TOT_EFF = Total staff effort (in days); CUM = Cumulative error detection capability
(% of initial errors detected); 50 = "AS-IS" No Inspection Baseline; 80 = "TO-BE" Inspection Baseline

FIGURE 2 - PERFORMANCE MEASURE DISTRIBUTIONS
Analysis Phase

- Evaluate Baseline Process Alternatives
- Determine Tradeoff Rule(s)
- Conduct Sensitivity Analyses
- Select Alternative(s) for Implementation
Determine Tradeoff Rule(s)

Which alternative is best?

Need to reduce multiple performance measures to one decision statistic that can be used to rank process alternatives.

Possible Options
- Utility functions
- Financial measures (e.g. Net Present Value (NPV), Internal Rate of Return (IRR aka ROI), etc.)
- Optimization techniques (e.g. Data Envelopment Analysis (DEA))
- Analytic Hierarchy Process (AHP)
- Combination
Financial Measures of Performance

- Gets management interest (and excitement)
- Supports building a business case
- Trick is to convert performance measures to cash equivalents
- Examples:
 - Net present value (NPV)
 - Internal rate of return (IRR aka ROI), etc.
 - Discounted Payback period
Determining Financial Benefits

• Need to reduce all benefits to cash equivalents
• Implementation costs are easy to include
• Effort is a straightforward conversion
• Some measures can be converted to effort (e.g. number of customer defects are converted to the effort to correct them)
• Other measures (e.g. time to market) can be difficult to convert.
Ranking by Financial Performance

<table>
<thead>
<tr>
<th>Rank</th>
<th>CONFIG</th>
<th>NPV(15%) Mean</th>
<th>NPV(15%) STDev</th>
<th>PR(NPV<0) (Risk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F F F F</td>
<td>$362,291.35</td>
<td>$118,344.45</td>
<td>0.11%</td>
</tr>
<tr>
<td>2</td>
<td>W W W W</td>
<td>$253,041.92</td>
<td>$68,513.12</td>
<td>0.08%</td>
</tr>
<tr>
<td>3</td>
<td>W W N W</td>
<td>$157,874.18</td>
<td>$44,518.84</td>
<td>0.09%</td>
</tr>
<tr>
<td>4</td>
<td>F F N N</td>
<td>$27,836.80</td>
<td>$26,910.00</td>
<td>15.15%</td>
</tr>
<tr>
<td>5</td>
<td>W W N N</td>
<td>$0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Case Study: Cash Flows

- Implementation Costs: $31,650
- Life Cycle Effort Savings: $4,591
- Field Service Effort Savings: + $105,569

21 months = 16.44 TO-BE Component
Duration * 1.25

33 months = Project duration of 21 months + 12 months
Case Study: Results

• The process change offered significant reductions in remaining defects, staff effort to correct field detected defects, and project duration. The expected ROI was 56% for a typical 30 KLOC release.

• Pilot implementations indicated that the process change provided a 37% ROI even under worst case conditions.
Analysis Phase

• Evaluate Baseline Process Alternatives
• Determine Tradeoff Rule(s)
• Conduct Sensitivity Analyses
• Select Alternative(s) for Implementation
Conduct Sensitivity Analyses

• “What if” analyses allow managers to apply the model to evaluate the proposed process change(s) under different business conditions and assumptions.

• Provides added insight and confidence into the potential process change
Case Study: Questions Investigated

- Will the process change improve project performance?
- What is the cost the firm is currently paying by conducting Unit Tests incorrectly?
- Is partial implementation of the proposed process change possible?
- How would potential learning curve effects affect the performance of the process change?
- Would alternative process changes offer a greater improvement?
- Can the project benefit from reusing process artifacts?
Case Study: Results Obtained

• Compressing Unit Test causes significant increases in schedule (+18%) and effort costs (+8%) during the later testing phases and reduces overall product quality (+48% increase in defects).

• Partial implementation of the process change is possible for complex portions of the code. Estimated ROI is 72%.

• Potential learning curve effects significantly enhance the performance of the process change. Expected ROI of 72% assuming only moderate improvements.
Case Study: Results Obtained

• Improving inspections would be a more effective process improvement than the Creating Unit Test Plans process change.

• Reusing the Unit Test Plans on the next development cycle provided an overall ROI of 73% (compared to 56% expected improvement without reuse)
Analysis Phase

• Evaluate Baseline Process Alternatives
• Select Evaluation Method and Criteria
• Conduct Sensitivity Analyses
• Select Alternative(s) for Implementation
Select Alternative(s) for Implementation

• Process simulation can be used to estimate the ROI and risk
• Results are traded-off with other factors not included in the model such as budget and political considerations
• Utilize all the information at hand (quantitative and qualitative) to choose the best alternative
6 – Examples of Process Simulation Applications in Industry and Government
• Mission: To independently verify and validate software on all missions that are life critical or have significant vehicle cost involved.
• Problem: Limited resources to conduct IV&V. Critical need to deploy IV&V in most effective manner possible (biggest return on investment)
• Goal to optimize IV&V within a project and across projects.
Description of Model

- Based on IEEE 12207 Software Development Process
- Tuned for large-scale NASA projects (Size >100 KSLOC) (uses actual data)
- 8 major life cycle phases; 86 process steps
- Includes IV&V Layer
- Compares alternative IV&V configurations (ROI)
NASA IV&V

• Mission: To independently verify and validate software on all missions that are life critical or have significant vehicle cost involved.

• Problem: Limited resources to conduct IV&V. Critical need to deploy IV&V in most effective manner possible (biggest return on investment)

• Goal to optimize IV&V within a project and across projects.

Description of Model

• Based on IEEE 12207 Software Development Process
• Tuned for large-scale NASA projects (>100 KLOC) (Real data)
• 8 major life cycle phases; 86 process steps
• Includes IV&V Layer
• Compares alternative IV&V configurations (ROI)
NASA Model – Includes IV&V Layer with IEEE 12207 Software
IV&V Layer – Select Criticality Levels for IV&V Techniques using pull-down
A Look Inside the Model...

[Diagrams and images related to software engineering processes, such as code verification, integration, and validation, are shown.]

[Software interface for activity, IV&V, with fields for resource pools, IV&V phase, desired staff, earned value, schedule/effort ratio, and anomaly detection rates.]

[Process criticality levels and average IV&V efforts are also shown.]
What is IV&V?

• IV&V = Independent Verification and Validation

• Performed by one or more independent groups

• Can be employed at any phase with different levels of coverage
IV&V Techniques

• Traceability Analysis
• Software Design Evaluation
• Interface Analysis
• Criticality Analysis
• Component Test Plan Verification
• V&V Test Design Verification
• Hazard Analysis
• And etc.
Importance/Benefits – Enduring Needs

IV&V Level

• IV&V New Business Planning (Independent Bottoms-Up Cost Estimation for NASA Projects and for IV&V)
• IV&V Policy Research (IV&V strategies for alternative NASA Project types)
• IV&V Services Contract Bid Support
• IV&V Services Replanning
• Cost/Benefit Evaluation of new technologies and tools
• Space Science Data Mining
Macro IV&V Questions

• What is the optimal IV&V strategy for a given NASA project or NASA project type?
• What combination(s) of IV&V techniques enable us to meet or exceed the quality assurance goals for the system?
• Given a budget of “X” dollars, what IV&V activities should be conducted?
• What if the complexity or defect profiles for a particular project were different than expected?
• How is the duration of the IV&V effort impacted by the overall staffing level for the project?
Preliminary Study

• Use the model to quantitatively assess the benefits of performing IV&V on software development projects

• Comparing benefit of applying IV&V activities at different phases and in combination
Impact of IV&V at Different Points in the Development Process

Result Comparison

<table>
<thead>
<tr>
<th>Case</th>
<th>Configuration</th>
<th>Total Effort Mean (Person Months)</th>
<th>Rework Effort Mean (Person Months)</th>
<th>Duration Mean (Months)</th>
<th>Corrected Defects Mean (Number of Defects)</th>
<th>Latent Defects Mean (Number of Defects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td>346.26</td>
<td>201.65</td>
<td>58.42</td>
<td>6,038.26</td>
<td>629.48</td>
</tr>
<tr>
<td>2</td>
<td>IV&V at Validation</td>
<td>355.35</td>
<td>210.75</td>
<td>59.95</td>
<td>6,113.79</td>
<td>574.17</td>
</tr>
<tr>
<td>3</td>
<td>IV&V at Code</td>
<td>334.13</td>
<td>189.53</td>
<td>57.38</td>
<td>6,134.84</td>
<td>573.49</td>
</tr>
<tr>
<td>4</td>
<td>IV&V at Design</td>
<td>327.93</td>
<td>183.33</td>
<td>56.56</td>
<td>6,123.11</td>
<td>581.27</td>
</tr>
<tr>
<td>5</td>
<td>IV&V at Requirements</td>
<td>326.82</td>
<td>182.21</td>
<td>56.40</td>
<td>6,078.87</td>
<td>600.04</td>
</tr>
</tbody>
</table>

% Improvement Compared to the Baseline

<table>
<thead>
<tr>
<th>Case</th>
<th>Configuration</th>
<th>Total Effort Mean</th>
<th>Rework Effort Mean</th>
<th>Duration Mean</th>
<th>Corrected Defects Mean</th>
<th>Latent Defects Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td>-2.63%*</td>
<td>-4.51%*</td>
<td>-2.63%*</td>
<td>+1.25%</td>
<td>+8.79%*</td>
</tr>
<tr>
<td>2</td>
<td>IV&V at Validation</td>
<td>-4.51%*</td>
<td>-1.28%*</td>
<td>-1.77%</td>
<td>-1.60%</td>
<td>-9.00%*</td>
</tr>
<tr>
<td>3</td>
<td>IV&V at Code</td>
<td>+3.50%*</td>
<td>+6.01%*</td>
<td>+1.77%</td>
<td>+1.60%</td>
<td>+8.90%*</td>
</tr>
<tr>
<td>4</td>
<td>IV&V at Design</td>
<td>+5.29%*</td>
<td>+9.09%*</td>
<td>+3.17%</td>
<td>+1.41%</td>
<td>+7.66%*</td>
</tr>
<tr>
<td>5</td>
<td>IV&V at Requirements</td>
<td>+5.62%*</td>
<td>+9.64%*</td>
<td>+3.46%</td>
<td>+0.67%</td>
<td>+4.68%*</td>
</tr>
</tbody>
</table>
Impact of IV&V Techniques in Combination

Result Comparison

<table>
<thead>
<tr>
<th>Case</th>
<th>Configuration</th>
<th>Total Effort Mean (Person Months)</th>
<th>Rework Effort Mean (Person Months)</th>
<th>Duration Mean (Months)</th>
<th>Corrected Defects Mean (Number of Defects)</th>
<th>Latent Defects Mean (Number of Defects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td>346.26</td>
<td>201.65</td>
<td>58.42</td>
<td>6,038.26</td>
<td>629.48</td>
</tr>
<tr>
<td>6</td>
<td>IV&V at Code and Validation</td>
<td>342.14</td>
<td>197.54</td>
<td>58.78</td>
<td>6,203.66</td>
<td>524.96</td>
</tr>
<tr>
<td>7</td>
<td>IV&V at Req and Code</td>
<td>316.15</td>
<td>171.55</td>
<td>54.41</td>
<td>6,170.94</td>
<td>547.74</td>
</tr>
<tr>
<td>8</td>
<td>Two IV&V Techniques at Code</td>
<td>327.10</td>
<td>182.50</td>
<td>57.54</td>
<td>6,180.22</td>
<td>540.60</td>
</tr>
</tbody>
</table>

% Improvement Compared to the Baseline

<table>
<thead>
<tr>
<th>Case</th>
<th>Configuration</th>
<th>Total Effort Mean</th>
<th>Rework Effort Mean</th>
<th>Duration Mean</th>
<th>Corrected Defects Mean</th>
<th>Latent Defects Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IV&V at Code and Validation</td>
<td>+1.19%</td>
<td>+2.04%</td>
<td>-0.63%</td>
<td>+2.74%</td>
<td>+16.60%*</td>
</tr>
<tr>
<td>7</td>
<td>IV&V at Req and Code</td>
<td>+8.69%*</td>
<td>+14.93%*</td>
<td>+6.86%*</td>
<td>+2.20%</td>
<td>+12.99%*</td>
</tr>
<tr>
<td>8</td>
<td>Two IV&V Techniques at Code</td>
<td>+5.53%*</td>
<td>+9.50%*</td>
<td>+1.50%</td>
<td>+2.35%</td>
<td>+14.12%*</td>
</tr>
</tbody>
</table>
Rapidly Deployable Software Process Simulation Models and Training

• **Goal:** To create a flexible decision support tool that can be easily used to support better project management, planning and tracking by quantitatively assessing the economic benefit of proposed process alternatives.

• **Motivation:** Companies need to get useful results from simulation models quickly.
Rapidly Deployable Process Models

Software Development Process

Life Cycle Model:
- **REQ** → **DES** → **IMP** → **TEST** → **CUST** → **TP** → **ICG**

Generic Process Blocks:
- Blue
- Purple
- Green

Generalized Equations:

- Various interconnected circles with arrows indicating relationships.

Page 93
Simulation Dashboard

[Image of a simulation dashboard with process parameters and results graphs]
Demonstration
7 – Wrap up/ Conclusions
Conclusions

Process simulation modeling has been used successfully to quantitatively address a variety of issues from strategic management to process understanding.

Key benefits include:
- Decision Support and Tradeoff Analysis
- Sensitivity Analysis – “What if”
- Supports Industry Certification and process improvement programs including CMMI, Six Sigma, and others
- Supports CMMI at all levels 2 through 5
- Design and Define Processes
- Benchmarking
- Can address project manager concerns
- Supports project management and control
Conclusions

Process Tradeoff Analysis Method (PTAM) provides a tested approach for developing models and utilizing the results

Not a silver bullet

Focus on RAPID DEPLOYMENT

• Reducing costs and time to develop models
• Making models easier to use – No simulation expert needed
The End

Questions?
Contact Information

David M. Raffo, Ph.D.
Associate Professor, Portland State University
Visiting Scientist, Software Engineering Institute

President, Vaiyu, Inc.
raffod@pdx.edu
503-725-8508
503-939-1720