The Look and Feel of a Successful CMMI Implementation

Tim Kasse
Kasse Initiatives LLC
+1 – 972 - 987 - 7706 USA
+49 (0) 7721 - 407 - 851 Europe
+65 6430 6769 Singapore
Welcome

Welkom
Huan Yín
Bienvenido
Bienvenue
Wilkommen
Καλως Ορίσατε
Bienvenuto
Välkommen
Tervetuloa
Witamy
ברוכים הבאים
SM CMM Integration SCAMPI are service marks of Carnegie Mellon University

® Capability Maturity Model, Capability Maturity Modeling, CMM, and CMMI are registered in the U.S. Patent & Trademark Office
Agenda

- Engineering Systems Think
- Business Results
- Roles and Responsibilities
- Project Management
- Risk Management
- Quality Management
- Supplier Management
- Recursive Nature of Requirements Engineering
- Alternative Solutions
- Components to Products
Agenda - 2

- Improving Processes At The Organizational Level
- The Knowledge and Skills Base
- Integrated Teams
- Reducing Variation
- Establishing a Measurement Program
- Improving Beyond Stability
- Repeatable, Effective, and Long Lasting
- Process Improvement Means Change
- Constagedeous Approach to Process Improvement
- Summary
Engineering Systems Think
Laws of Engineering
Systems Thinking

◆ Systems Thinking is a discipline for seeing the whole

◆ In all of the project’s phases/stages, and along the system’s life, the systems engineer has to take into account:
 ◇ The customer’s organization vision, goals, and tasks
 ◇ The customer’s requirements and preferences
 ◇ The problem to be solved by the system and the customer’s needs

◆ The whole has to be seen as well as the interaction between the system’s elements
 ◇ Iterative or recursive thinking must replace the traditional linear thinking
The solution is not always an engineering one – remember to always take into account:

- Business and economic costs
- Reuse or utilization of products and infrastructure already developed
- Organizational, managerial, political, and personal considerations

The end user must be considered as a major part of the system:

- At each stage the human element must be considered
Business Results
Support for the Organization’s Business Objectives
For a focus on Process Improvement to be successful, it must be tied to the organization’s business objectives for example:

- Improve predictability of development cycle length, delivery time and costs
- Find and fix each problem once
- Reduce system errors that are discovered by customers
- Increased control of suppliers
- Increase quality of products
- Always work with the correct version of a module or life-cycle work product
Support for Senior Management’s Vision
Vision

- Where does senior management think the organization will be in the next year, and in the next two to five years?
- What products will be in the mainstream?
- Who will the competitors be?
- Will there be collaborators or strategic alliance partners?
- What technology changes are expected and/or will be required to support the vision?
Vision - 2

- What does the organizational structure have to be to support this vision?
- Who will the organization’s suppliers be?
- What must the organizational culture be to support this vision?
- How will a Process Improvement Initiative support this vision?
Support for Project Leaders to Manage and Control Better
Process Improvement: What Value to Project Leaders?

What measurable value will the quality management initiative bring to the project leaders who bear the line responsibility for product delivery?

- More accurate schedules?
- Higher productivity of developers?
- Better quality products?
- Traceable requirements?
- Controlled configuration items?
- Reviews focused on critical components?
- Better control of suppliers?
- Reduction in potential risks?
Process and Business
Process and Business

- Process defines how a business does business
 - Software Engineering processes
 - Hardware Engineering processes
 - Systems Engineering processes
 - Manufacturing processes
 - Financial processes
 - Human Resources processes
 - Legal processes
 -

- Process helps to establish the business culture and then sets guidelines and expectations
Process can be viewed as a methodology that is applied from elicitation of requirements to design through delivery.

Process helps the developers and maintainers to build in and retain the quality of the products and services and ensures profitability for the business.

There are no shortcuts – there are no other alternative methods that a business can adopt that embraces a “cradle to grave” philosophy to ensure quality and profitability with control every step of the way.
Roles and Responsibilities
Since there are inherent costs to implementing process, Senior Management must demonstrate their belief in it through their communications, daily decision making, and financial commitment.

Senior Management’s resolve must not waiver when deadlines beg for shortcuts to get the product out the door.
Senior Management

- Establish Policies – behavior expectation setting documents
- Allocate or reallocate resources
- Establish Authority and Responsibility
- Authorize Training
- Approve Organizational Commitments
- Have Senior Management Oversight into the processes used on projects and resulting product quality
- Provide Visible Management Support
Provide Visible Management Support

- Ensuring effective bi-directional communication from Senior Management through developer
- Developing or overseeing the development of management and technical policies
- Establishing a Software Engineering Process Group (SEPG) if one does not exist along with the SEPG Chairman role
- Setting up a Software Quality Assurance Group (SQA) Program at the organizational and project level
- Ensuring that the Software Configuration Management function is established and operating on all projects
Middle Managers

◆ Provide the corporate bridge between the programs and projects and the senior management team
◆ Exercise risk management decision making based on data
◆ Guide the process improvement steering committee
◆ Serve as a “process owner”
 ◆ The Middle Manager as “Process Owner” must participate in the periodic Senior Management Oversight Meeting and report the progress on his process focus area.
Today’s Project Manager is expected to be:

- Better educated
- Open, friendly, and people-oriented
- A better listener
- Quality conscious
- Receptive to new ideas
- More participative
- A Facilitator
- Skilled at group process and group dynamics
- Encouraging to others to participate in plans and decisions
- Skilled on how to coach, inspire, and motivate the project team
- Able to span boundaries
- Able to provide and apply integrative management techniques to unique, complex organizational ventures characterized by interdependent efforts, a variety of specialists, over multiple sites, multiple languages and multiple cultures
The Project Manager accepts responsibility for:

- Working with the customer, the organization’s Senior Management Team and outside groups such as regulatory agencies to determine which product components or subsystems should be treated as “critical”
- Ensuring that Peer Reviews and Unit Tests are planned on the life-cycle work products that are identified from the product lifecycle chosen for the project
- Ensuring that “developmental configuration management” is carried out on the project
Reviewing and responding to Non-Compliance reports that are the result of “objective evaluations” carried out on the processes, procedures, standards, guidelines, templates and checklists that have been identified to be followed in the Project’s Quality Plan.

Supporting the “Escalation Procedure” that a Quality Engineer may follow if the project does not respond to the non-compliance reports in a timely fashion.
Project Managers must manage their suppliers and are responsible for their involvement with:

- Supplier Selection Criteria
- Developing the requirements to a sufficient level to determine which requirements would or should be designed and implemented by a supplier
- Developing the project plan to a sufficient level to determine if the Supplier’s estimations are in line with project expectations
- Helping to develop the Request for Proposal (RFP)
- Helping to select the supplier based on the supplier selection criteria
- Leading the “orientation meeting” with the Supplier’s team to ensure complete understanding of what is expected and who is responsible for what part of the development
- Managing the Supplier through specialized project management activities that keep track of Supplier’s progress and performance
- Ensuring that the Supplier’s capability level is maintained through periodic review
Process Group: Sample Improvement Infrastructure

Process Improvement Infrastructure

Senior Management Advisory Board

Steering Committee

SEPG

Work Group 1

Work Group n

Development Organization

Senior Management

Middle Management

Project Management

Process Liaisons

Project Members

Non-Project Staff
SQA - Agent for Process Improvement

Management

SQA

Developers

SEPG

Provides visibility into the effectiveness and efficiency of the processes being used and the resulting product quality.

Provides feedback to the individual projects on the efficiency and effectiveness of the processes that they are following so they can be improved at the project level.

Provides feedback to the SEPG on the organizational processes they have facilitated in developing so they can be improved at the organizational level.
CM Roles and Responsibilities

- Configuration Management Group
 - Configuration Management Manager
 - Configuration Management Engineer
 - Configuration Management System Manager
 - Test Library Manager
 - Release Library Manager

- Project Manager

- Project Team

- Project CM Specialist

- Configuration Control Board
 - Organizational Level
 - Project Level
Mapping of System and Developmental Baselines

Functional Baseline
- System Requirements Specification Review
- (Product or Product Component Requirements)

Allocated Baseline
- Software Requirements Specification Review
- Interface Requirements Specification Review
- (Customer Requirements)

Requirements Baseline
- Software Requirements Specification Review
- Interface Requirements Specification Review
- (Org., Proj., or Other Outside Requirements)

Architectural Design Baseline
- Architecture Specification Review

Detailed Design Baselines
- Design Specification Review

Module Baselines
- Code Walkthroughs or Inspections
- Module Testing from baseline

Integration & Test Baselines
- Integration & Interface Testing from baseline

Systems Testing Baseline
- Systems Testing & Functional Configuration Audit from baseline

Product Baseline
- Physical Configuration Audit on System or Product and Deliverable customer documentation becomes Operational Baseline

© 2005 Kasse Initiatives, LLC

Version 3WCSQ 2005 v2.6

LNF Successful CMMI Imp- 34
Integration ensures the product components match the interface descriptions and “fit together”

- Interfaces are tested to ensure that Systems Testing can be conducted against a complete system or subsystem.

Systems Testing is the first time at which the entire system can be tested against the Systems Specification.

- Systems Testing measures and determines what the systems capabilities are.

- Systems test plan covers types of testing to be performed, test strategies, test coverage approaches, methods and approach for tracing requirements to test cases, and reliability metrics.
Most organizations have at least one person who has an interest in and an ability to understand metrics and measurements.

Few organizations have a designated Measurement Group.

While it may not seem worthwhile for an organization to form a separate Measurement Group, having a measurement expert or two supporting the organization’s metrics needs is quite valuable.
Systems Engineering

- Systems Engineering provides a “cradle to grave” view of the evolving system.
- Systems engineers help to define the total technical and managerial effort required to transform the set of customer needs, expectations, and constraints into a life-cycle balanced solution.
Project Management
Project Management

- Project Management is a set of tools, techniques and knowledge that, when applied, helps produce better results for a project.

- Project Management provides a process that can help answer basic questions:
 - What are you going to produce?
 - What is it the customer wants and needs?
 - Who is going to do the work?
 - How long will it take?
 - How much will it cost?
 - What might go wrong?
 - How can you avoid potential problems?
Project Management functions include:

- Define scope of project
- Work Breakdown Structure
- Estimation
- Risk Management
- Stakeholder Involvement
- Commitment Process
- Planning including integrating all support plans that affect the project
- Supplier Management
- Monitoring and Control
Iterative Nature of Planning

Goal Statement

Budget

Work

Risks

Resources

Schedule

Estimates

Project Baseline
Relationships among the Planning Processes

Core Processes

- **SCOPE**
 - Initiation Planning
 - Scope Definition

- **TIME**
 - Activity Definition
 - Activity Sequencing
 - Schedule Development

- **COST**
 - Resource Planning
 - Activity Duration Estimating
 - Cost Estimating
 - Cost Budgeting
 - Cost Planning

- **RISK**
 - Planning

Facilitating Processes

- **Quality**
 - Quality Planning

- **Human Resources**
 - Organizational Planning
 - Staff Acquisition

- **Procurement**
 - Procurement Planning
 - Solicitation Planning

- **Risk**
 - Risk Identification
 - Qualitative Risk Analysis
 - Quantitative Risk Analysis
 - Risk Response Planning

From Initiating Processes

From Executing Processes

From Controlling Processes

© 2005 Kasse Initiatives, LLC Version 3WCSQ 2005 v2.6 LNF Successful CMMI Imp- 46
Risk Management
Risk Management Cycle

Risk Identification

Risk Monitoring

Risk Reduction and Contingency Planning

Risk Assessment and Prioritization

Risk Management Cycle

Risk Identification

Risk Monitoring

Risk Reduction and Contingency Planning

Risk Assessment and Prioritization
Elements of Risk Management

Risk Management
- Risk Identification
- Risk Analysis
- Risk Prioritization
- Risk Management Planning

Risk Control
- Risk Mitigation
- Risk Monitoring

Risk Assessment
- Risk Analysis
For every high severity risk a **scenario** should be developed

One procedure for developing such a scenario involves:

- Thinking about the risk as if it had occurred
- Stating the scenario as if the problem had happened
- Listing the events and conditions that would precede the risk occurrence
Risk Scenario Example

Start from the point as if the risk had occurred and work backward toward the current state.

Current State

Threshold

State: Problem - 1

State: Where Risk Becomes A Problem
Establishing Risk Thresholds

- Risk Management Strategy
- Mitigation Techniques
- People Assigned
- Contingency Planning

Problem

Risk Exposure Threshold

Project Start

Current State

Risk Monitoring

Mitigation

Tracking

Contingency Plan
Total Risk Management

Risk Assessment Questions
- What can go wrong?
- What is the likelihood that it would go wrong?
- What are the consequences?

Sources of Failure
- Hardware Failure
- Software Failure
- Organizational Failure
- Human Failure
- External Failure

Risk Management Questions
- What can be done?
- What options are available and what are their associated trade-offs in terms of all costs, benefits, and risks?
- What are the impacts of current management decisions on future options?

What is the likelihood that it would go wrong?

What can go wrong?

What are the consequences?
Quality Management
Quality Management consists of:

- Setting Quality Goals that support business objectives
- Establishing and enforcing a Quality Policy
- Planning for quality
- Developing Processes
- Establishing the use of Standards and Procedures
- Conducting Objective Evaluations Audits with respect to product quality
- Conducting Objective Evaluations Audits with respect to process quality
LNF Successful CMMI Imp- 57

Quality Management - 2

- Performing multiple levels of Testing
- Conducting Peer Reviews throughout the product lifecycle
- Designing in Quality Factors (e.g., maintainability, reliability)
- Providing visibility into the process and product quality for management (Reporting)
- Getting non-compliance issues resolved before the product is delivered to the customer
- Configuration Management
- Measurement
These quality functions may be performed by:

- Project Leaders and project staff
- Quality Manager or Quality Representative
- Organizational level QA Group
- Systems Engineering
- Independent Test
- Documentation
- Customer

and others……….
The CM Functions

- Identification
- Baselineing
- Change Control
 - Organizational Change Control Board
 - Developmental Change Control Board
- Status Accounting
- Configuration Auditing
- Configuration Management System
- Interface Control
- Supplier Control
What is the system configuration?

How are changes to the configuration controlled?

What changes have been made to the system?

Does the system satisfy the requirements?

Identification

Control

Status

Accounting

Auditing

The system consists of the following baseline documents and products:...

The steps to process changes are...

The system configuration and related changes at this line are the combination of the following baselines, changes, pending changes:...

The system as currently built differs from the baselines and approved changes as follows:...
End-to-End Quality
What Business Are You in?

- What Business Are You in?
- How does each department contribute to this business success?
- How do these departments interact with each other to maximize company profit and achieve business goals?
- What business processes exist in each department to optimize its product quality and minimize interface conflicts?
What standards and models are you using to accomplish daily tasks?

What personal processes are being used for each person to optimize his/her performance?

Does each person understand his/her role in supporting the Organization’s business quality goals?
"Companies ... tend to focus only on the end result – return on investment. This viewpoint is like trying to keep a dog happy by forcibly wagging its tail."
Supplier Management
Terminology

- **Buyer**: the project or organization that is setting up an agreement with an entity outside of the project’s or organization’s boundaries to develop a product or product component for delivery.

 - Outside of the project’s boundaries indicates the Buyer normally has no control over the supplier’s resources.
Supplier: a project inside or outside of the Buyer’s business unit or organization that agrees to do the necessary product or product component development according to the requirements of the Buyer and deliver within specified constraints such as cost, schedule, quality, and performance.
Treat the Supplier As A Project Member

Project

Supplier

Supplier Member

Project Member
Supplier Management Overview

- Sister Divisions
- Open Source
- Other Projects in Business Unit
- Contractors (Resource Hiring)
- Off-the-Shelf Products
- Collaboration To Partner
- Reuse Components
- Subcontractors
- Outsourcing

© 2005 Kasse Initiatives, LLC
Requirements Engineering
Requirements Development
Processes for Engineering a System
EIA - 632
Fundamental Processes for Engineering a System

Processes for Engineering A System

Acquisition and Supply
- Supply Process
- Acquisition Process

Technical Management
- Planning Process
- Assessment Process
- Control Process

System Design
- Requirements Definition Process
- Solution Definition Process

Product Realization
- Implementation Process
- Transition to Use Process

Technical Evaluation
- Systems Analysis Process
- Requirements Validation Process
- System Verification Process
- End Products Validation Process
Customer Requirements

Customer requirements represent Stakeholder needs, expectations, constraints, and interfaces.

Requirements invariably contain a mixture of:
- Problem information
- Statements of system behavior
- Systems properties
- Design constraints
- Manufacturing constraints

This can and normally does result in conflicts that must be negotiated and resolved.
Generic Requirements Elicitation Process

- Establish objectives
 - Business goals
 - Problems to be solved
 - System constraints

- Understand background
 - Organizational structure
 - Application domain
 - Existing systems

- Organize knowledge
 - Stakeholder identification
 - Goal prioritization
 - Domain knowledge filtering
 - Domain requirements
 - Organizational requirements

Collect requirements
- Stakeholder requirements

Operational Concepts and Scenarios

- Scenarios and Operational Concepts are developed, analyzed, and reviewed to refine existing requirements and discover new requirements, needs, and constraints.

 - Scenarios are normally sequences of events that might occur in the use of the product.
 - Operational concepts depend on both the design solution space and the scenarios.
 - Define the interaction of the product, the end user, and the environment.
 - Define the operational, maintenance, support, and disposal needs.
Customer requirements are analyzed in conjunction with the development of the operational concept to derive a more detailed and precise set of requirements called “product and product component requirements”
Spiral Model of the Product Requirements Engineering Process

Decision point: accept document or re-enter spiral

Informal statement of requirements

Requirements elicitation

Requirements validation

Agreed requirements

Requirements document and validation report

Start

Requirements analysis and negotiation

Requirements documentation

Draft Requirements document

Gerald Kotonya and Ian Sommerville, Requirements Engineering, John Wiley and Sons, 1998

© 2005 Kasse Initiatives, LLC
Requirements Management
The Requirements Management and Requirements Development Partnership

Requirements Development

Requirements Management

RD

TS

RM
Impact Analysis for Requirements Change Requests

Impact Analysis is made based on the requirements change request:

- Development Schedule
- Release Schedule
- Changes required to this system
- Staffing
- Components
- Development and Target equipment
- Risks
- SCOPE
- Costs
- Changes required to other systems or interfaces within the project
- Other existing products or product lines
Alternative Solutions
Problem: Alternative solutions need to be identified and analyzed to enable the selection of a life-cycle balanced solution in terms of the quadruple constraint of cost, schedule, technical performance and quality.
Solution: This may be accomplished through the allocation of the requirements to:

- Software
- Hardware
- Electronics
- Mechanics
- Optics
- Hydraulics
- Manufacturing Processes
- Services
- People

It may be accomplished through:

- In house development
- Purchase of Commercial-Off-The-Shelf products
- Use of Suppliers
- Use of Re-use components
Product or product component designs must provide the appropriate life-cycle content for:

- Implementation
- Modification
- Reprocurement
- Maintenance
- Sustainment
- Installation

Design documentation provides a reference point to support the mutual understanding of the design by relevant stakeholders.
Architecting
Systems Architecting

- Systems Architecting has been defined as the process of creating complex, unprecedented systems.
- Building systems in today’s world is tenuous at best.
 - Requirements of the marketplace are ill-defined.
 - Rapidly evolving technology provides new services at a global level instantly.
 - Uncertainty is increasing about the way the system will be used, the components that will be incorporated and the interconnections that will be made.
Generating a system architecture as part of the systems engineering process can be seen as a deliberate approach to deal with the uncertainty that characterizes these complex, unprecedented systems.
Traditional Approach to System Architecting

- Many methodologies have been developed to support a traditional system development model
 - Define the requirements
 - Consider several options
 - Emerge with a well-defined design through a process of elimination
 - Based on structured analysis and design
Traditional Approach to System Architecting - 2

- Effective when the requirements are well defined and remain essentially constant during the system development period
- Cannot handle change well
 - If the implementation of the system is long – on the order of years – the requirements change because of changing needs and new technology offers different alternatives and opportunities
Evolutionary Approach

- New approach that is emerging with roots in software systems engineering
- Deals with uncertainty in requirements and in technology, especially for systems with a long development time and expected long life cycle
 - Evolutionary development
 - Build-a-little, Test-a-little
- Requirements are allowed to be more abstract and therefore subject to interpretation
- Alternative solutions are explored and pursued further as new technology options become available
Intermediate designs are saved

Some intermediate designs are implemented as prototypes but not operationally implemented while others are implemented in traditional ways.

Advantages of Object-Oriented approach:
- Allows flexibility in the design as it evolves over time

Disadvantages of Object-Oriented approach:
- Requires some early elimination of technology alternatives in the absence of reliable information
Evolutionary Approach - 3

SOLUTIONS THAT LEAD TO DESIGNS

PROBLEM

SOLUTIONS

time
At any time in the development process, when there is a need to build a system, the available solution that best meets the current requirements is selected and implemented using any systems engineering approach.
Quality Factors
Product Quality is described through a number of factors (reliability, maintainability).

Each factor has several attributes that describe it called criteria.

Each criterion has associated with it several metrics which taken together quantify the criterion.
Quality Factors

- Correctness
- Efficiency
- Expandability
- Flexibility
- Integrity
- Interoperability
- Maintainability
- Manageability

- Portability
- Reliability
- Reusability
- Safety
- Survivability
- Usability
- Verifiability
Maintainability deals with the ease of finding and fixing errors.

Fitness for use regarding maintainability means that the software is productive through the maintenance lifecycle, covering error detection through the issue of a new release.
From Components to Products
The basis for effective product integration is an integration strategy that uses combinations of techniques in an incremental manner.

- An integration strategy should be developed early in the project, concurrently with product development plans and specifications.
- The integration plan should identify a sequence for receipt, assembly, and activation of the various components that make up the product.
Establishing the product integration strategy including the following:

- Integration sequence
- Work to be done
- Responsibilities for each activity
- Resources required
- Schedule to be met
- Procedures to be followed
- Tools required
- Environment
- Personnel skills
Product Integration Environment

- Establish and maintain the environment needed to support the integration of the product components
- The product integration strategy may identify needs for an environment that must be acquired or developed
- The product integration environment may include the reuse of existing organizational resources
Ensure Interface Compatibility

Product Component

Interface to Product Component

Product Component

Interface to Environment

Environment
Confirm Readiness of Product Components for Integration

- Confirm that each product component is compliant with its interface requirements
 - Ensure that the product components are delivered to the product integration environment in accordance with the planned product integration strategy
 - Verify the receipt of each product component
 - Verify the configuration status of the product component against the expected configuration
 - Verify the configuration status of the accompanying interface documentation against the expected configuration
 - Perform pre-checks of all physical interfaces before connecting product components together
Verification

- Verification includes verification of the product and intermediate work products against all selected requirements, including customer, product, and product component requirements.
Validation

- Demonstrate that a product or product component fulfills its intended use when placed in its intended environment

- Validate Maintenance, Training, and Support Services
 - Demonstrate that the maintenance tools are operating in the actual product
 - Verify in the field that support of the product is effective as specified by the customer (e.g., Mean Time to Repair)
 - Demonstrate adequate training of the products and services
Improving Processes at the Organizational Level
Sample Improvement Infrastructure

Process Improvement Infrastructure

- Senior Management Advisory Board
- Steering Committee
- SEPG
- Work Group 1
- Work Group n

Development Organization

- Senior Management
- Middle Management
- Project Management
- Process Liaisons
- Project Members
- Non-Project Staff
The Knowledge and Skills Base
Core Competencies

- What business is the organization in?
- What are the core competencies required to perform the organization’s business and remain competitive?
- What is the organizational workforce knowledge and skills base?
- What training, mentoring, and coaching does each person need in order to develop the necessary skill set to do their everyday job and gain in the organization’s core competencies?
- What must recruiters do to find appropriate candidates with either the necessary knowledge and skills or the proven ability to learn
Organization-Level Training

◆ The organization’s strategic business objectives and improvement plans should be analyzed to plan for current, intermediate, and future training needs in order for the organization to remain competitive.
Determine which training needs will be focused on at the organizational level.

Analyze the project and support groups’ needs to identify common training needs that can be most efficiently addressed organization-wide.

Negotiate specific training needs with various projects and support groups.

“Economy of Scale” must always be considered when planning for organizational vs. project-level training.

Critical Corporate Asset.doc
Integrated Teams
Successful Integrated Teaming depends on:

- Integrated Project Management which emphasizes **proactively integrate** the concepts in the Project Plan and all supporting plans
- Collaboration skills from Integrated Team members to satisfy customer and business needs that would not normally be achieved by normal project members
- Shared Vision
- Organizational Environment for Integration
- Team members who have strong interpersonal skills and ability to work in a team environment and the **ability to complement the mix and knowledge and skills in the team**
Shared Vision Context

- Individual
- Integrated Team
- Project
- Organization
Reducing Variation
CMMI Overview

<table>
<thead>
<tr>
<th>Level</th>
<th>Process Characteristics</th>
<th>Process Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizing</td>
<td>Focus is on quantitative continuous process improvement</td>
<td>Causal Analysis and Resolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organizational Innovation and Deployment</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitatively</td>
<td>Process is measured and controlled</td>
<td>Quantitative Project Management</td>
</tr>
<tr>
<td>Managed</td>
<td></td>
<td>Organizational Process Performance</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defined</td>
<td>Process is characterized for the organization and is proactive</td>
<td>Requirements Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Product Integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organizational Process Focus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organization Process Definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organizational Training</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managed</td>
<td>Process is characterized for projects and is often reactive</td>
<td>Requirements Management</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Project Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Monitoring and Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supplier Agreement Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Product and Process Quality Assurance</td>
</tr>
<tr>
<td>1</td>
<td>Process is unpredictable, poorly controlled, and reactive</td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Variation Among Individuals

One of the traits of CMMI Maturity Level 1 is that the process “belongs” to the people. If others follow a process, it is normally due to the strong personality of someone on the project who has experienced using processes in another environment.

From a variation point of view, a level one organization has great variation based on its individual employees following their own process paths. This is why maturity level one companies depend so heavily on the heroics of its people.
Project's Processes to Reduce Variation

- At CMMI Maturity Level 2, processes normally belong to the project and are enforced by the Project Manager.

- The processes, standards, guidelines, checklists, and templates are enforced for all of the project members to achieve more uniformity in development and product quality.

- Assuming that all projects follow some form of process, the amount of variation that was seen in organizations of maturity level 1 is reduced even if all of the projects followed a different process.
At The Organizational Level, an organization that wishes to achieve CMMI Maturity Level 3 needs to have its processes owned by the organization for economy of scale to be realized and process measurement to make practical sense.

These process definitions are tailored and incorporated into the project’s defined processes throughout the organization and thus variation in project development and product and service quality is again reduced.
An organizational measurement repository is established and maintained which contains both product and process measures based on the organization’s set of standard processes along with the information needed to understand and interpret the measures.

Trends can be seen and predictability can be achieved.

Process performance baselines can now be developed to support quantitative management later.
Quantitative Project Management

- Quantitative Management is tied to the organization’s strategic goals for product quality, service quality, and process performance.
- When higher degrees of quality and performance are demanded, the organization and projects must determine if they have the ability to improve the necessary processes to satisfy the increased demands.
- Achieving the necessary quality and process performance objectives requires stabilizing the processes or subprocesses that contribute most to the achievement of the objectives and reducing process variation to support the quantitative management objectives.
Establishing a Measurement Program
Measurement and Analysis Overview

A measurement initiative involves the following:

- Specifying the objectives of measurement and analysis such that they are aligned with established information needs and business objectives.
- Defining the measures to be used, the data collection process, the storage mechanisms, the analysis processes, the reporting processes, and the feedback processes.
- Implementing the collection, storage, analysis, and presentation of the data.
- Providing objective results that can be used in making business judgments and taking appropriate corrective actions.
Basic Measures

- Project Management Measures
 - Size and complexity
 - Effort and Cost
 - Schedule
 - Computer Resources
 - Data Management
 - Knowledge and Skills
 - Stakeholder Involvement
 - Technical Performance
 - Commitments
 - Critical Dependencies
 - Quality
Effectiveness of Processes

- We must not only define and follow processes but we must determine if the processes are working for us the way we expected them to.
 - How well are the processes working?

- Requirements Management Processes Effectiveness - Example
 - Number of change requests per month compared with the original number of requirements for the project
 - Critical change requests
 - Intermediate change requests
 - Nice to have change requests
More Advanced Measures

- Peer Review Effectiveness
- Testing Effectiveness
- Test Coverage
Quantitative Project Management
Quantitative Management Concepts

- Quantitative Management is tied to the organization’s strategic goals for product quality, service quality, and process performance.

- When higher degrees of quality and performance are demanded, the organization and projects must determine if they have the ability to improve the necessary processes to satisfy the increased demands.

- Achieving the necessary quality and process performance objectives requires stabilizing the processes or subprocesses that contribute most to the achievement of the objectives.

- Assuming the technical requirements can be met, the next decision is to determine if it is cost effective.
Quality and Process Performance Objectives

Define and document measurable quality and process performance objectives for the project.

Examples of Quality Objectives
- Mean time between failures
- Critical resource utilization

Examples of Process Performance Objectives
- Percentage of defects removed by type of verification activity
- Defect escape rates
- Number and density of defects (by severity) found during the first year following product delivery
- Rework time as a percentage of total project life-cycle time
Measures and Analytic Techniques
A point above or below the control lines suggests that the measurement has a special preventable or removable cause.

The chart is used for continuous and time control of the process and prevention of causes.

Plotted points are either individual measurements or the means of small groups of measurements.

The chart is analyzed using standard Rules to define the control status of the process.

Data relating to the process.
Histograms

Number of Days

Product – Service Staff Hours

© 2005 Kasse Initiatives, LLC
Improving Beyond Stability
Causal analysis and resolution is the process of improving quality and productivity by preventing the introduction of defects into a product.

Based on an understanding of the defined process in use and how it is implemented, the root causes of the defects and the future implications of the defects are determined.
Cause and Effect Diagrams (Fishbone)

- Vague Requirement
- Incorrect Requirement
- Missing Requirement
- Infeasible Requirement
- Customer Requirement Changed

Req’mts Defects
Pareto Charts

Percentage of Defects Detected During System Testing by Phase Where Defect Was Injected

- Req'mts: 50
- Design: 25
- Code: 20
- Test: 5
Run Chart

Number of Required Changes to a Module as the Project Approaches Systems Test

- Syntax Check
- Desk Check
- Code Review
- Unit Test
- Integration and Test
- Systems Test
What are the issues relating to traffic jams?

Interrelationships Diagram

A - Auto Accidents
In=4 Out=1

B - Road Construction
In=0 Out=2

C - Rush Hour Traffic
In=6 Out=1

D - Weather Conditions
In=0 Out=3

E - Cultural Events
In=2 Out=2

F - Mechanical Breakdown
In=0 Out=2
Check Sheet (Proof and Checking Errors)

<table>
<thead>
<tr>
<th>Errors Classification</th>
<th>Book Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Spelling</td>
<td>///</td>
</tr>
<tr>
<td>Punctuation</td>
<td>//</td>
</tr>
<tr>
<td>Missing Information</td>
<td>/</td>
</tr>
<tr>
<td>Redundancy</td>
<td>//</td>
</tr>
<tr>
<td>Technical Errors</td>
<td>//</td>
</tr>
<tr>
<td>Format Errors</td>
<td>//</td>
</tr>
<tr>
<td>Incomplete Concepts</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
</tr>
</tbody>
</table>
Bar Chart

Defect Analysis

Percent of Defects

Software Activity

- Reqs analysis
- Design
- Code
- Unit test
- Component test
- System test
- Customer use

- Injected
- Found
- Escaped

© 2005 Kasse Initiatives, LLC
Version 3WCSQ 2005 v2.6
Force Fields

<table>
<thead>
<tr>
<th>Driving Forces</th>
<th>Restraining Forces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases Self-Esteem</td>
<td>Past Embarrassments</td>
</tr>
<tr>
<td>Helps career</td>
<td>Afraid to make mistakes</td>
</tr>
<tr>
<td>Communicates ideas</td>
<td>Lack of knowledge on the topic</td>
</tr>
<tr>
<td>Contributes to a plan/solution</td>
<td>Afraid people will be indifferent</td>
</tr>
<tr>
<td>Encourages others to speak</td>
<td>Afraid people will laugh</td>
</tr>
<tr>
<td>Helps others to change</td>
<td>May forget what to say</td>
</tr>
<tr>
<td>Increases energy of group</td>
<td>Too revealing of personal thoughts</td>
</tr>
<tr>
<td>Helps clarify speaker’s ideas by getting feedback from others</td>
<td>Afraid of offending group</td>
</tr>
<tr>
<td>Helps others to see new perspective</td>
<td>Fear that nervousness will show</td>
</tr>
<tr>
<td></td>
<td>Lack of confidence in personal appearance</td>
</tr>
</tbody>
</table>

Fear of Public Speaking

- Afraid to make mistakes
- Lack of knowledge on the topic
- Afraid people will be indifferent
- Afraid people will laugh
- May forget what to say
- Too revealing of personal thoughts
- Afraid of offending group
- Fear that nervousness will show
- Lack of confidence in personal appearance
The Organizational Innovation and Deployment process area selects and deploys improvements that can enhance the organization’s ability to meet its quality and process performance objectives.

Quality and process performance objectives that this process area might address include:

- Improved product quality
- Increased productivity
- Decreased cycle time
- Greater customer and end user satisfaction
- Shorter development or production time to change functionality, add features or adapt to new technologies
Process performance is a measure of the actual process results achieved and is characterized by both process measures and product measures.

Process measures include:
- Effort
- Cycle time
- Defect removal efficiency

Product measures include:
- Reliability
- Defect density
- Response time
Process and Quality performance objectives that will be deployed are selected from proposals based on the following criteria:

- A quantitative understanding of the organization’s current quality and process performance
- The organization’s quality and process-performance objectives
- The resources and funding available for that deployment
- Estimates of the improvement resulting from the deployment
- The expected benefits weighed against the cost and impact to the organization
Repeatable
Effective
and
Long Lasting
Institutionalization involves implementing practices that

- Ensure the process areas are **effective**, **repeatable** and **long lasting**
- Provide needed infrastructure support
- Ensure processes are defined, documented, understood
- Enable organizational learning to improve the processes
Capability Level 0

- Capability Level 0 deals with Incomplete processes
- An incomplete process is a process that is either not performed or only performed partially
 - One or more Specific Goals of the process are not performed
Capability Level 1

- Capability Level 1 deals with **Performed** processes.
- The process performance may not be stable and may not meet specific objectives such as quality, cost, and schedule, but useful work can be done.
- A **critical distinction** between an incomplete process and a performed process is that a performed process satisfies all of the specific goals of the process area.
Capability Level 1 - 2

- **GP 1.1 Perform Base Practices**
 - Perform the base practices of the process area to develop work products and provide services to achieve the specific goals of the process area.
 - The purpose of this generic practice is to produce the work products and deliver the services that are expected by performing the process.
 - These activities may be done informally, without following a documented process description or plan.
CL-2 Generic Practices

- **GP 2.1 Establish an Organizational Policy**
 - Establish and maintain an organizational policy for planning and performing the process
 - Policies exist for Project Planning
 - New Client Offers

- **GP 2.2 Plan the Process**
 - Establish and maintain the requirements, objectives, procedures and plan for performing the process

- **GP 2.3 Provide Resources**
 - Provide adequate resources for performing the planned process, developing the work products, and providing the services of the process
CL-2 Generic Practices - 2

◆ GP 2.4 Assign Responsibility
 ◊ Assign responsibility and authority for performing the process, developing the work products, and providing the services of the process

◆ GP 2.5 Train People
 ◊ Train the people performing or supporting the planned process as needed

◆ GP 2.6 Manage Configurations
 ◊ Place designated work products of the process under appropriate levels of configuration management

◆ GP 2.7 Identify and Involve Relevant Stakeholders
 ◊ Identify and involve the relevant stakeholders as planned
GP 2.8 Monitor and Control and Measure the Process
- Monitor and control the process against the plan and take appropriate corrective action

GP 2.9 Objectively Evaluate Adherence
- Objectively evaluate adherence of the process, and the work products and services of the process to the applicable requirements, objectives, and standards, and address non-compliance

GP 2.10 Review Status with Higher-Level Management
- Review the activities, status, and results of the process with higher-level management and resolve issues
GP 3.1 Establish Defined Process
 - Establish and maintain the description of the defined process

GP 3.2 Collect Improvement Information
 - Collect work products, measures, measurement results, and improvement information derived from planning and performing the process to support the future use and improvement of the organization’s processes and process assets
Equivalent Staging

Requirements Management
Measurement and Analysis
Project Monitoring and Control
Project Planning
Process and Product Quality Assurance
Supplier Agreement Management
Configuration Management
Decision Analysis Resolution
Product Integration
Requirements Development
Technical Solution
Validation
Verification
Organizational Process Definition
Organizational Process Focus
Integrated Project Management
Risk Management
Organizational Training
Organizational Process Performance
Quantitative Project Management
Organizational Innovation and Deployment
Causal Analysis and Resolution

Capability Level
1 2 3 4 5

Target Profile 2
Target Profile 3
Target Profile 4
Target Profile 5

Plus Some PAs at CL4
Plus Some PAs at CL5

© 2005 Kasse Initiatives, LLC
Version 3WCSQ 2005 v2.6
LNF Successful CMMI Imp- 163
Process Improvement Means Change!
Principles of Process Change

- Major changes must be sponsored by Senior Management
- Focus on fixing the process, not assigning the blame
- Understand current process first
- Change is continuous
- Improvement requires investment
- Retaining improvement requires periodic reinforcement
Building Support for Change

Support

Legitimacy

[courtesy JMaher]
Inputs:
- Human
- Financial
- Technological
- Material
- Resources

Outputs:
- Products
- Services

Input-output flow of materials, energy, information

Organizations as Systems

[Source: Morgan, 1986]

© 2005 Kasse Initiatives, LLC
Process Improvement Model
Process Improvement Model (PIM)

1. Commitment to Process Improvement
2. Appraisal of the Engineering Process
3. Infrastructure and Plans for Process Improvement
4. Implementation of Process Improvements
Constagedeous Approach to Process Improvement
Both the Staged Representation and the Continuous Representation not only can be but **must** be used together to provide proper guidance that results in effective process improvement that supports an organization’s business objectives.
The CMMI has evolved from contributions of engineers, managers, and social psychologists over the past 100 years. The multiple views of the CMMI contribute to the picture that process improvement must concern itself with people, technology, measurement, risk, and customer satisfaction if an organization’s business objectives are to be supported with the CMMI-based process improvement initiative.
Thank You
Kasse Initiatives
Contact Information

United States Address

Tim Kasse
CEO & Principal Consultant
Kasse Initiatives LLC
PMB 293
1900 Preston Road # 267
Plano, Texas 75093
United States of America
+1 972 – 987 – 7606
Business
+1 972 – 987 – 7607 FAX

Europe Address

Tim Kasse
CEO & Principal Consultant
Niedereschacher Strasse 6
78052 Villingen-Schwenningen
Germany
49(0)7721- 407 851
Business
49(0)7721- 407 852 Fax

www.kasseinitiatives.com

© 2005 Kasse Initiatives, LLC

Version 3WCSQ 2005 v2.6

LNF Successful CMMI Imp- 178
Pamelia S. Rost
Executive VP
Business Development

Kasse Initiatives LLC
PMB 293
1900 Preston Road # 267
Plano, Texas 75093
United States of America
+1 972 – 987 – 9878 Business
+1 972 – 987 – 7607 FAX
PameliaSRost@aol.com

www.kasseinitiatives.com
Kasse Initiatives
Contact Information

Ingo Tegtmeier
Operations Manager
Kasse Initiatives LLC
Niedereschacher Strasse 6
78052 Villingen-Schwenningen
Germany
+49 7721 407 851 – Business
+49 7721 407 852 – FAX
itegtmeier@t-online.de

www.kasseinitiatives.com