Leveraging Enabling IT Technologies for “The Home and Away Game”

Panel Discussion on Adapting Lethality for Homeland Defense/Security

Presented by: Angela M. Messer
Principal, Booz Allen Hamilton
McLean, VA
June 15, 2005
Discussions topics on leveraging enabling IT technologies for homeland defense and homeland security

- The need for the ‘NET’ and a net-centric environment to connect systems, information and users

- The power of the enabling technologies for the ‘home and away games’
 - Communications
 - Data and information sharing
 - Net-centric capabilities

- 4 Case studies
 - ‘Home Game’ -- National Guard
 - ‘Home Game and Away Game’ -- DoD Biometrics Management Office and the Biometrics Fusion Center
 - ‘Away Game’ efforts that have potential to impact the ‘Home Game’ -- DCGS-Army and JIAPC

- Critical success factors
Future Combat Scenario

- Power of the ‘Net’
- Information sharing capabilities
- Could we apply this scenario to the HLS/HLD environment?
0700Z: Brigade Commander Logs Into “My GIG”

- Logs into the GIG directly via a portable device
- Commander’s Identity and device are identified and registered to the GIG
- Updates Subscription services, add new COI(s) and sets up alerts.
- Reviews published reports

Future Combat Scenario

Afghanistan
0845Z: Brigade commander quickly establishes task force and COI – inviting participants and including needed assets.
0917Z: Target Identified

DIA Analyst: “...unlikely to be armored division; possible deception”

Coalition Partners

“No enemy sighted in area past 30 days”

Future Combat Scenario

Strike Package

“Video of vehicle convoy”

Recon Team

“I see two Red Cross Trucks”

“Reaching back to subject matter experts”

Afghanistan
The possible connections between platforms, people and systems required for NCW is typical of what analysts call an “n^2” problem ...

... where the difficulty climbs exponentially with each new component; “n^2” problems don’t scale well
The term “net-centric” is intended to position “the network” as the source and destination of information and is critical in enabling information sharing ...

... but effecting this transformation requires wholesale changes in technology, policy, and culture
For the ‘Home Game” -- the complexities in HLS/HLD are compounded by the number of stakeholders at the local, state, regional and federal level – which requires enhanced training, equipment, information exchange and sharing, and knowledge sharing capabilities.
The Mega Trends in enabling technologies --- Wave One and Two initiatives are exponentially fueling information growth and access, generating the need for Wave Three products and services to exploit this information.

1. **Wave One:** Computing/Processing (1960s-1980s)
 - **Technology Catalyst:** Microprocessor/WINTEL
 - **Characteristics:**
 - Standardized
 - Commoditized
 - **Business Benefit:**
 - Desktop applications
 - Decentralized processing
 - **Key Challenges:**
 - IT as largest capital expense/TCO
 - Linkage to productivity

2. **Wave Two:** Communication/Networking (1980s-2000s)
 - **Technology Catalyst:** TCP/IP, Ethernet, HTML
 - **Characteristics:**
 - Distributed
 - Open
 - **Business Benefit:**
 - Increased collaboration
 - Greater information access
 - **Key Challenges:**
 - Security
 - Impact on business model

3. **Wave Three:** Content & Data Management (2000-2010s)
 - **Technology Catalyst:** XML
 - **Characteristics:**
 - Standardized
 - Integrated
 - **Business Benefit:**
 - Real-Time Integrated Enterprise
 - Turing Data into Actionable Knowledge
 - **Key Challenges:**
 - Information Management
 - Cost and Complexity
 - Impact on business model
 - Security
SOA and web service technologies are becoming the next IT revolution, helping organizations align their software applications with business and mission requirements.

Technology Evolution

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>Mainframe</td>
<td>Mainframe</td>
<td>Client Server</td>
<td>Web</td>
<td>SOA</td>
</tr>
<tr>
<td>Architecture</td>
<td>1 Tier</td>
<td>1 Tier</td>
<td>2 Tier (Server, Application)</td>
<td>3 Tier (Database, Server, Client)</td>
<td>Service-Oriented</td>
</tr>
<tr>
<td>Business Motivation</td>
<td>Initial Automation</td>
<td>Initial Desktop Computing Power</td>
<td>Greater Desktop Computing Power</td>
<td>eBusiness</td>
<td>Business Agility</td>
</tr>
</tbody>
</table>

Terminology Evolution

- Microsoft coined the term “Web services” in June 2000, when the company introduced Web services as a key component of its .Net initiative, a broad new vision for embracing the Internet in the development, engineering and use of software.
- Gartner coined the term “Service Oriented Architecture” in the late 90’s to describe a component-based distributed computing environment.
- Developers use XML tags to describe individual pieces of data, forming XML text-based documents that can be processed on any platform.
- Web services take advantage of object-oriented programming by enabling developers to build applications from existing software components using a modular approach.

Business Model Evolution

- **TIME**
 - Independent Operations
 - Limited Business Connections
 - Global Business Ops – Unanticipated business partners

NATIONAL DEFENSE INDUSTRIAL ASSOCIATION

Booz | Allen | Hamilton
Case Study #1
Joint CONUS Communications and Support Environment (JCCSE)

“Trusted Information Sharing, Collaboration, and a COP for Homeland Defense and Civil Support (HLD/CS) Missions”
NG Operational Scope (OV-1)

Federal Defense Missions: Deployed as part of Joint Task Force

“Away Game”

“The National Guard”

“Home Game”

Mobilization

Principal Partners: Combatant Commanders

Federal Missions
- Long & Short Term Plans
- War Planning
- Coordination
- Common Operating Picture
- Situational Awareness

Parent Military Services

Federal Missions Actions

State Missions
- Unit Status & Training
- HD/MACA Planning
- Coordination
- Common Operating Picture
- Situational Awareness

State Missions Actions

Principal Federal Partners

Information Technology Infrastructure based on the Global Information Grid

54 Joint Force Headquarters

Civil Support
- Local Response
- Homeland Defense

Actions
‘The Home Game’ -- IT Support for Homeland Defense & Civil Support

- Need for a **collaborative information exchange environment** for support of inter-agency situational awareness, information sharing, and collaboration requirements, and supported by **IT capabilities that are simple to deploy and use**

- Need for a **deployable incident area communications organizations throughout the 54 States/Territories** with specified capabilities, response times, and readiness standards to **extend collaborative information exchange capabilities to any incident site**

- Need to develop IT capabilities for **Title 10/32 dual-hatted Joint Task Force commanders** and other possible C2 structures employed for Homeland Defense & Security missions

- Need for a **continuous situational awareness of our IT resources** so they can be more effectively employed to support users at the National- and State/Territory levels, and incident site

The Joint CONUS Communications Support Environment (JCCSE) construct provides the vision for supporting these requirements
JCCSE Mission Environment leverages wireline and wireless networking, Ka and Ku band satellite, land mobile radio, VPNs, and incident management collaboration/intelligence analysis tools.

JCCSE provides information sharing, collaboration, and COP development and sustainment capabilities supporting all levels, including to/from any incident site.
JCCSE Definition and Way Ahead

- The JCCSE is an “umbrella” term for the National Guard’s (NG’s) information technology (IT) support for Homeland Defense and Civil Support (HLD/CS) missions.

- JCCSE provides multiple, inter-dependent organizational as well as technology components – both C4ISR and commercial technologies, tailored to support National Guard HLD/CS mission requirements.

<table>
<thead>
<tr>
<th>JCCSE Organizational Components</th>
<th>JCCSE Infrastructure Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Centers</td>
<td>Network and Net-Centric IT Services</td>
</tr>
<tr>
<td>--- NGB JOC</td>
<td>--- Leverage GuardNet & ANG Enterprise Net</td>
</tr>
<tr>
<td>--- JFHQ-State JOCs</td>
<td>--- Migrate toward DoD Enterprise (e.g., GIG-BE)</td>
</tr>
<tr>
<td>C4ISR Management</td>
<td>Incident Area IT Capabilities</td>
</tr>
<tr>
<td>--- NGB Joint C4ISR Coord Ctr (JCCC)</td>
<td>--- First Responder Interoperability</td>
</tr>
<tr>
<td>--- JFHQ-State J-6 IT Environment Mgt</td>
<td>--- Deployed NG Forces Support</td>
</tr>
<tr>
<td>Incident Area Communications</td>
<td>--- Reach Back Capabilities</td>
</tr>
<tr>
<td>--- JTF Communications Element</td>
<td>--- Other Validated HLD/CS Mission Support</td>
</tr>
</tbody>
</table>

- JCCSE extends inter-agency trusted information sharing and collaboration capabilities to and from the National-level, the 54 States and Territories, and local incident sites.

- NGB, in collaboration with COCOMS(s) and all JFHQ-State, takes lead and stands up JCCSE.

- JCCSE evolves as part of the larger DoD enterprise, leveraging the GIG and the current infrastructure/infostructure.
Case Study #2
DoD
Biometrics Management Office (BMO) and Biometrics Fusion Center (BFC) --

Protecting the Homeland
Protecting the Homeland -- Background on DoD BMO and BFC

- Army CIO/G-6 is DoD Executive Agent for Biometrics and the key architect of DoD biometrics guidance (pursuant to Public Law 106-246 (13 Jul 00))
- DoD Biometrics Management Office (BMO) focus on Policy and Standards has led to significant progress in the DoD biometrics community

- Since 21 Jul 04, the DoD Biometrics Fusion Center (BFC), under the Army CIO/G-6, has been processing, searching, and matching biometric data, primarily fingerprints, to identify national security threats.

- This biometric effort has received extensive support from the Office of the DepSecDef, ASD (HD), ASD (NII), NORTHCOM, National Detainee Reporting Center, Army G-2, Army CIO/G-6, National Ground Intelligence Center, CENTCOM, U.S. Force Protection Initiative, Terrorist Explosives Device Analytical Center, the FBI Criminal Justice Information Services Division, and the FBI Lab.

- As of 9 May 05, the BFC has made 1884 significant matches.

- Elements of the DoD Biometrics enterprise solution, including the DoD Automated Biometric Identification System (ABIS) and Biometric Identification System for Access (BISA), are examples of how biometrics has identified potential national security threats to protect the homeland.
DoD Automated Biometric Identification System (ABIS)

- DoD Biometrics Fusion Center
- DoD Organizations
- Automated, secure linkages planned in 2005

- DoD Organizations:
 - FBI
 - CJIS

- Other Governmental Organizations

- DoD Biometrics
- Force Protection Initiative
- Force Protection Initiative 2

- Current Biometric Data
- Criminal Master File

- Terrorist/Crime Scenes (Latents – 800)

- Naval Special Warfare Command Suspects (Ten flat – 125)

- BAT – Detainees, Locally Employed Personnel, misc. (Various – 57,000)

- 1991 PGW EPW (Various – 81,165)

- Force Protection Initiative (Ten rolled – 72,363)

- Force Protection Initiative 2 (Ten rolled – 115,893)

- National Security Entry/Exit Registration System (Two flat index – 400)

- Arreestes in U.S.

- National Security Entry/Exit Registration System

- Operation Enduring Freedom / Operation Iraqi Freedom
 - Persian Gulf War Enemy Prisoners of War Force Protection Initiatives

- ~49M records of persons arrested in the U.S.
Latent Fingerprints – uploaded to AKO for information sharing for key stakeholders

AKO-Secure Folders

Latent prints

Biometric Data (sent from organization A)

Latent print uploaded to AKO

DoD ABIS

FBI CJIS IAFIS

CIA

DIA

G-2

State

Other

Booz | Allen | Hamilton
Impact of these enabling IT technologies for HLD/HLS

- DoD ABIS has directly aided the warfighter and law enforcement since its inception in Jul 04
 - ABIS has made 1884 significant biometric matches to date (21 Jul 04 – 9 May 05)
 - Matches include suspected bombmakers, passport forger

- ABIS & BISA initiatives will significantly enhance force protection efforts at U.S. installations – at home and abroad

- DoD Biometrics plays a central role for the DoD and USG in identifying potential national security threats
Case Study #3
Distributed Common Ground System Army (DCGS-A)
Situational Awareness for the Warfighter and possibly the HLD/HLS community
DCGS-A Mission and Operational View

- DCGS-A Enables Situation Awareness, Identification and Location of Enemy and Estimates of his Intentions to the Warfighter at All Echelons

- DCGS-A Enables Exploitation and Fusion of Data From Army, Joint, National and Allied Sensors and Sources to Provide the Information Needed by the Warfighter
 - If applied to HLD/HLS, law enforcement and other stakeholders could be sensors and sources of information for the COP

- DCGS-A is the Army component of the DoD DCGS Family of Systems

<table>
<thead>
<tr>
<th>KPP</th>
<th>Threshold</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Ready</td>
<td>Designated as Enterprise-Level or Critical to the Joint Integrated Architecture</td>
<td>In the Joint Integrated Architecture Values</td>
</tr>
<tr>
<td>Fusion</td>
<td>Automated Fusion: Level 0, Level 1 and correlate reports from all intelligence disciplines</td>
<td>Automated Level 3 Fusion</td>
</tr>
<tr>
<td>Reliability</td>
<td>90% for 72 hours</td>
<td>99% for 72 hours</td>
</tr>
</tbody>
</table>

Joint ISR for the Army

Joint Operating Concepts:
- Joint Command and Control
- Battlespace Awareness

- Increases access to ISR data
- Reduces forward footprint
- Improves Joint interoperability
Realizing Net-Centricity - Service Oriented Architecture (SOA)

- Common perspective that Web services will do for system-to-system communications what HTTP/HTML did for the browser-based web.

- Web Services are a set of XML based standards and technologies for distributed computing that characterize SOA:
 - Defined in a WSDL
 - Published in UDDI registries
 - Invoked via SOAP messages

Service Producer

Data and applications available for use accessible via services. Metadata added to services based on producer’s format.

- Describes content using metadata
- Posts metadata in catalogs for discovery
- Exposes data and applications as services

Service Consumer

Automated search of data services using metadata. Pulls data of interest. Based on producer registered format and definitions, translates into needed structure.

- Searches metadata catalogs to find data services
- Analyzes metadata search results found
- Pulls selected data based on metadata understanding

Service Enabled Infrastructure

Security Services
Monitoring Services
Discovery Services
Messaging Services
Data Services
Translation Services
DCGS-A Spiral 5 Architecture Reference Model

Spiral 5 Data Services: Data from Sensors and Systems at All Echelons Provided Directly to DCGS-A Enterprise

DCGS-A Services Network

CONSUMERS

INTERFACE
SPECS
APPLICATION
AND
DATA SERVICES

Sensors and Sources

Workflow Services

Storage Services

Fusion Services

IMINT

SIGINT

HUMINT

Weather

Terrain

Workflow Services

Storage Services

Fusion Services

IMINT

SIGINT

MASINT

HUMINT

Weather

Terrain

LEGACY ADAPTERS

Sensor Adapter

Sensor Adapter

Tactical Overwatch
Reach to IDC, etc.

TES-M, IPF Functions in DCGS-A Fixed Site

SPIRAL 5 DATA SERVICES:
- Data from Sensors and Systems at All Echelons Provided Directly to DCGS-A Enterprise
- POR Functions Provided as Services to DCGS-A Enterprise (TOI 3+)
- POR Data Products and Functions Reside within DCGS-A Boundary
- Applications Selected in DCGS-A SIL Using Best Value Process

Booz | Allen | Hamilton
Case Study #4
Joint Integrative Analysis and Planning Capability (JIAPC)

An IO capability that could be applied to the home game in a non-kinetic, non-destructive way
Joint Integrative Analysis and Planning Capability (JIAPC) Description and Overview

- JIAPC is a large scale Systems Delivery effort to provide Effects Based Transformational IO Capabilities

- JIAPC will provide a collaborative environment to facilitate fully integrated nodal and network analysis for effects based operational support with standardized processes, enhanced analysis and planning capabilities, seamless target characterization, and timely response to planning requirements for lethal and non-lethal options for courses of action

- JIAPC will provide the following capabilities:
 - Connect with Stakeholders to access Intel & other IO Information sources
 - Support “Integrative Analysis” through Knowledge Management, Visualization and Decision Aids
 - Provide the results of Integrative Analysis to the Joint IO Planning Capability (IOPC-J) in a tightly integrated and iterative manner in support of both IO Planning and IO BDA
 - Support effective collaboration across the entire process

- HLD/HLS potential application involves USD(I), STRATCOM, and DHS
Holistic Target Characterization (HTC) Process Definition

1) Problem Definition
- Desired Effect Refinement
- Problem Statements
- Development & Vetting
- Action Assignments

2) Focused Data Integration
- Knowledge Discovery
- Info Search/Query
- Info Retrieval
- RFI Dev/Refinement
- Node Analysis
- Populate PMESII Templates

3) HTC Node Identification
- Knowledge Discovery
- Layered Analysis
- Cross Domain Analysis
- Center of Gravity Identification
- Pattern Recognition
- Non-Obvious Node-Relationship Validation

4) Vulnerability Characterization
- Specific Nodal System Evaluation
- Potential Vulnerability Estimates

5) Vulnerability Relationship Map
- Desired Effects
- Problem Statements
- Node Identification
- Vulnerability Characterization

NDIA
Booz | Allen | Hamilton
1) Problem Definition
- Desired Effect Refinement
- Problem Statements Development & Vetting
- Action Assignments

2) Focused Data Integration
- Knowledge Discovery
- Info Search/Query
- Info Retrieval
- RFI Dev/Refinement
- Node Analysis
- Populate PMESII Templates

3) HTC Node Identification
- Knowledge Discovery
- Layered Analysis
- Cross Domain Analysis
- Center of Gravity
- Identification
- Pattern Recognition
- Non-Obvious
- Node-Relationship Validation

4) Vulnerability Characterization
- Specific Nodal System Evaluation
- Potential Vulnerability Estimates

5) Vulnerability Relationship Map
- Desired Effects
- Problem Statements
- Node Identification
- Vulnerability Characterization

ESRI ArcGIS 9.1 is a collection of software products that enables users to analyze and visualize geographic information.

3D Analyst: Manipulate and visualize extremely large datasets in three dimensions.

Publisher: Create rich interactive maps that usable without an ESRI license.

Data Interoperability: Enables quick integration of various types of datasets.

ESRI ArcGIS 9.1 is a collection of software products that enables users to analyze and visualize geographic information.

3D Analyst: Manipulate and visualize extremely large datasets in three dimensions.

Publisher: Create rich interactive maps that usable without an ESRI license.

Data Interoperability: Enables quick integration of various types of datasets.

Booz | Allen | Hamilton
Netviz:
- Supports data exchanges with multiple standard interfaces (SQL, ODBC, etc.)
- Ability to visualize complex relationships in an intuitive manner
- Leverages existing disparate data and knowledge bases to build consolidated visual representations of their complex networks and systems
Critical Success Factors for applying proven enabling technologies to HLD/HLS missions

- Develop the **operational processes and procedures** to apply these IT technologies to the HLS/HLD environment – and then train and rehearse!

- Develop **policy** to mandate the use of **standards** and address the **legal issues**
 - Continue to develop interagency sharing
 - Frame the enterprise architecture
 - Address the complexities of the CONUS AOR and the impact to citizens

- Appropriately implement the **standards and specifications** to enable interoperability
 means that Standards will be crucial to the process
 - Requires U.S. Government organizations to explain failures to use commercial standards when such standards meet their needs
 - Requires U.S. Government organizations to adopt commercial standards wherever possible – particularly those that standards developing organizations have developed – in lieu of creating proprietary, non-consensus standards
Questions and Answers
Booz Allen Contact Information

Angela Messer
Principal

Booz Allen & Hamilton Inc.
8283 Greensboro Drive
Mclean, VA 22102
(703) 902-5666
Messer_Angela@bah.com