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SystemSystem
Spin Dependent Tunneling (SDT) or Magnetic Spin Dependent Tunneling (SDT) or Magnetic 
Tunnel Junction (MTJ) Sensor TechnologyTunnel Junction (MTJ) Sensor Technology
Applications of SDT Sensors ToApplications of SDT Sensors To IntraweaponIntraweapon
CommunicationCommunication
FuzingFuzing and Surveillance.and Surveillance.
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The magnetic induction system communicates by 
setting up a quasi-static field around the transmitting 
coil.  Current Commercial applications include wireless 
headsets, MP3 players and medical devices.
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Unlike RF communication that propagates an EUnlike RF communication that propagates an E--field field 
plane wave in free space.plane wave in free space.
Magnetic system sets up a quasiMagnetic system sets up a quasi--static magnetic field static magnetic field 
around transmitting coilaround transmitting coil
Second coil intersects the time varying magnetic flux Second coil intersects the time varying magnetic flux 
density (Bdensity (B--field).field).
Modulated voltage is processed and data recovered.Modulated voltage is processed and data recovered.
RF uses ERF uses E--field, Magnetic uses Bfield, Magnetic uses B--field.field.
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Wireless propagates RF plane waveWireless propagates RF plane wave
•• Flow of energy from transmitter to receiverFlow of energy from transmitter to receiver
•• RF is not contained RF is not contained ---- securitysecurity riskrisk

Magnetic induction remains localizedMagnetic induction remains localized
•• Little flow of energyLittle flow of energy

Magnetic induction system very localizedMagnetic induction system very localized
•• Magnetic fields decrease as inverse cube of Magnetic fields decrease as inverse cube of 

distancedistance
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Magnetic Induction vs. Magnetic Induction vs. 
RF WirelessRF Wireless

The magnetic field (B-
field) component drops 
off at a 1/R3 compared 
to an RF plane wave that 
drops off at 1/R.

Energy E ~ B2

E ~ 1/R6



Magnetic Induction Magnetic Induction 
Communication ConsiderationsCommunication Considerations
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Survivability After Weapon PenetrationSurvivability After Weapon Penetration
Sizing and Hardening of Transmitter UnitSizing and Hardening of Transmitter Unit
Required Receiver Sensor (SDT) SensitivityRequired Receiver Sensor (SDT) Sensitivity
System PowerSystem Power
SizeSize
CostCost



Magnetic Field Transmitter Magnetic Field Transmitter 
ConsiderationsConsiderations
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The bomb casing will act as a shield to the incoming magnetic 
vehicle signatures but absorb internal signal.
Communication effectiveness is composed of 3 complicating 

factors: absorption losses (flux shunting), reflection losses, and 
secondary reflection losses.
The complex calculations are a function of structure geometry, 

permeability, conductivity, and frequency, all interactively 
nonlinear.
The major factor for our application is reducing absorption 

losses.



Magnetic Field Detector Magnetic Field Detector 
ConsiderationsConsiderations
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Pickup coil responds to dB/Pickup coil responds to dB/dtdt
•• Voltage output is proportional to frequencyVoltage output is proportional to frequency
•• Large coils and many turns required at low frequenciesLarge coils and many turns required at low frequencies

Magnetic field detectors (SDT Sensors) respond to B FieldsMagnetic field detectors (SDT Sensors) respond to B Fields
•• Voltage output frequency independentVoltage output frequency independent
•• Very small, very light solidVery small, very light solid--state sensorsstate sensors



SDT Magnetic ReceiversSDT Magnetic Receivers
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Quantum tunneling of electrons through a thin insulator Quantum tunneling of electrons through a thin insulator 
between two magnetic layersbetween two magnetic layers
Tunneling current is effected by the relative orientation Tunneling current is effected by the relative orientation 
of magnetic moment in layersof magnetic moment in layers
One magnetic layer pinned and one layer free to One magnetic layer pinned and one layer free to 
respond to external fieldsrespond to external fields
All current passes through the interfaceAll current passes through the interface--high Tunneling high Tunneling 
Magneto Resistance (TMR) (high sensitivity)Magneto Resistance (TMR) (high sensitivity)
Extremely high resistance per unit area (low power)Extremely high resistance per unit area (low power)



Very Low Field Magnetic Very Low Field Magnetic 
Sensing/ReceiverSensing/Receiver
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SDT Layer StructureSDT Layer Structure
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The resistance of the sensor is measured by feeding a current 
vertically through the stack including through or “tunneling” 
through the insulating layer.



Individual SDT SensorIndividual SDT Sensor
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Current SDT Sensor Current SDT Sensor 
ResponseResponse
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The resistance of an SDT 
junction relative to directions 
of the pinned and free layers. 
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Low Power SDT SensorLow Power SDT Sensor
Operational TradeoffsOperational Tradeoffs
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Resolution of the SDT sensor is determined by the Resolution of the SDT sensor is determined by the 
amount of system power available amount of system power available 
The higher the required resolution, the higher the The higher the required resolution, the higher the 
power required.power required.
The two variables that can be manipulated are The two variables that can be manipulated are 
sensor resistance and amplifier supplysensor resistance and amplifier supply
SDT sensors can be manufactured from tens of  Ωs SDT sensors can be manufactured from tens of  Ωs 
to 100s of KΩs.to 100s of KΩs.
Sensitivity is a tradeoff to power consumption Sensitivity is a tradeoff to power consumption 



Record 70% TMR ReportedRecord 70% TMR Reported
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% TMR indicates 
the % change in 
resistance with a 
given applied 
field.  

This TMR was 
recently reported 
in a recent 
research project.



Applications of SDT Sensors ToApplications of SDT Sensors To
IntraweaponIntraweapon CommunicationCommunication
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SDT sensors packaged in SOIC packagesSDT sensors packaged in SOIC packages
•• SmallSmall
•• LightweightLightweight
•• No connections to external antenna necessaryNo connections to external antenna necessary

Output 100 mV/Output 100 mV/Oe Oe with 5 V supplywith 5 V supply
•• Frequency independent output voltageFrequency independent output voltage
•• Extracts no power from signalExtracts no power from signal



ConclusionsConclusions
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SDT sensors will develop sensitive, power and SDT sensors will develop sensitive, power and 
cost effective sensing for cost effective sensing for intraweaponintraweapon
communication as well as communication as well as fuzingfuzing and surveillance and surveillance 
systems systems 
Magnetometer applicationsMagnetometer applications
•• Unattended NetworksUnattended Networks
•• SecuritySecurity
•• UXOUXO
•• Traffic ManagementTraffic Management



NVE Sensor PackagesNVE Sensor Packages
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33--Axis Smart Digital Axis Smart Digital 
Magnetometer Using SDTMagnetometer Using SDT
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• Low Cost
• Low Power
• Small Size
• 3-Axis Digital Resolution
• RS-232 Interface: 9600/19200 Baud or RS-485
• Range: –1 to +2Oe, 1µOe Resolution
• Signal bandwidth: 154Hz
• Available in a Port-Powered Version
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