M234 / M235 / M236 SELF-DESTRUCT FUZES

43TH ANNUAL PUTAE CONFERENCE

u n n n

communications

KDI Precision Products, Inc.

OUTLINE

- Self-Destruct (SD) Fuze Objectives
- SD Fuze Requirements
- KDI SD Fuze Design and Operation
- Safety Test and Army Certification
- Type Classification Test Results
- High Rate Fuze Equipment Status
- High Rate Battery Equipment Status
- Product Improvements
- SD Fuze Schedule
- Summary

SD Fuze Objective

• Reduce the Number of Hazardous DPICM Grenade Dud Submunitions on the Battlefield

Advantages:

- Enables Maneuverability
- Reduces Clean-up Efforts
- Addresses Humanitarian Issues

U.S. Army SD Fuze Requirements

• Artillery (M234)

- 97% Primary Mode (Ground Impact)
- 99.8% Tactical Mode (Includes SD Function)
- ER-MLRS (M235)
 - Less Than 1% Hazardous Duds
 - Less Than 5% UXO (Fly-Off Requirement)

KDI's SD Fuze Key Design Feature

- Two Autonomous Fuzing Systems
 - PD Primary
 - Electronic Time SD
- Mechanical Arming of Primary Fuze <u>Not</u> Required to Arm SD Fuze
- Only SD Fuze Type Classified for U. S. Army and U. S. Navy Utilization

Background Fuze Operation

- SD Fuze Replacement for M223 Designed to Reduce the Number of Submunition Duds
- Minor Differences Between Artillery and MLRS Fuze
- Primary Mode of Operation
- Self-Destruct (Secondary) Mode of Operation

Self-Destruct Fuze Operation

Safety Testing

- MIL-STD-331-B Testing
- Detonator Out-of-Line Testing
- New Shunt Design / Testing
- E3 Testing
- Power On Reset
- Grenade Stack Test
- Propagation Test

- EOD Issues
 - Ribbon Color
 - Battery Bleed Down
- Energetics Compatibility
- Approved Fuze Fault Tree
- MIL-1316 Checklist

Army Certifications

- M234 Type Classified 24 Mar 98
- M235 Type Classification Paperwork in Process
- M236 Passed U.S. Army Safety Certification Firings
- Approved Fuze Fault Tree
- Approved MIL-1316 Checklist
 - Waiver For Stored Energy Granted
- M234/235 Granted AFSRB Final Safety Certification
- Fuze Line Qualification Planned For 4th Quarter 2003
- Fuze First Article Planned For 4th Quarter 2003

M234 SD Fuze Artillery Test Result

TEST	CONFIGURATION										
TEST	Primary	, Only	Tactical								
Grenade Functioning	(30/2585)	98.84%	(3/1439)	99.79%							
Air Drop	(21/1081)	98.0%	(0/156)	100%							
Initial Safety & Sequential Env.	(193/8125)	97.4%	2/1350)	99.9%							
DT&E Total		97.6%		99.83%							

M235 SD Fuze MLRS Test Results DVT TESTING

<i>Temperature / Range</i>	Reliability							
Hot @ 48Km	(5/461)	98.9%						
Ambient @ 25Km	(2/1014)	99.8%						
Cold @ 16Km	(9/1012)	99.1%						
Weighted Mission Total:		99.52%						

FOR VALIDATION, CALL: AMSTA-AR-FSA-P MR. Leon Springer (973) 724-2208

SELF-DESTRUCT FUZES M234 (ARTILLERY) / M235 (ROCKET)

KDI Precision Products, Inc.

AN ISO 9001 REGISTERED COMPANY

Self-Destruct Fuze Assembly Line

PALOMAR PRODUCTS CHIP ON BOARD

Base Machine 1

Base Machine 3

Base Machine 2

QSI Slide Sub-Assembly Molding Machine

Palomar Products Chip on Board Printed Wiring Board (PWB) Assembly (Machine) Status

Printed Wiring Board (PWB) Assembly (Machine) Status

- Palomar Line
 - Palomar Line Has Been Accepted a Rate
 - Palomar Line Is Production Ready

Slide Subassembly Machine

WIRING BOARD ASSEMBLY SLIDE ASSEMBLY MACHINE

Slide Subassembly Machine Status

- QSI Machine
 - QSI Line Has Been Accepted at 100% rate
 - QSI Line Is Production Ready

Spiral Safety Flag Assembly Machine (BM-2)

BASE MACHINE-2

Spiral Safety Flag Assembly Machine (BM-2) Status

- Base Machine #2 (BM-2) Tilted Spiral Flag Assembly
 - BM-2 Has Been Accepted at 100% Rate
 - BM-2 Is Production Ready

Slide Assembly Machine (BM-1)

Slide Assembly Machine (BM-1) Status

- Base Machine #1 (BM-1) Slide Assembly
 - BM-1 Has Been Proven Out at Rate
 - BM-1 Meets Product Quality Requirements
 - Final Acceptance Is Scheduled for First Quarter 2004
 - Final 100% Acceptance Is Prior to 200,000
 Production Units

Unloaded Fuze Assembly Machine (BM-3)

BASE MACHINE-3

Unloaded SD Fuze Assembly Equipment Status (BM-3)

- Base Machine #3 (BM-3) Fuze Assembly
 - BM-3 Has Been Accepted at 96% Rate
 - BM-3 Final Acceptance Will Be First Quarter 2004
 - BM-3 Is Production Ready

Shunt Assembly Machine Status

- Proven Out at Datum At 100% Rate
- Shunt Machine is Production Ready

SDF Loading Equipment

SDF Loading Equipment Status

- SDF Loading Equipment Has Been Proven Out at 75% Rate
- Final Acceptance Is Scheduled for First Quarter 2004
- Equipment Production Ready

Lithium Reserve Battery Line

- Battery Design Was Completed by ATK and Qualified
- High Rate Equipment Was Not Acceptable
- New Equipment Has Been Purchased From RD Systems
- Contract Awarded To RD Systems in May 2001
- Battery Line Was Installed At KDI in August 2003 (In Debug)
- KDI Has Retained THALES USFA, Netherlands to Consult on All Battery Issues

SELF-DESTRUCT LITHIUM RESERVE BATTERY

TERMINAL PLATE ASSEMBLY

TERMINAL PLATE INSULATOR

3

communications

ETCHED NICKEL

ANODE

SEPARATOR (2)

CATHODE

END PLATE

RESERVOIR GTM

WICKING STRIP

TRANSFER DISC

KDI PRECISION PRODUCTS, INC.

CASE

SDF Battery Animation

Lithium Reserve Battery

- Contract Structure
- Unique Battery HRE Contract
 - Preliminary Design Review (PDR)
 - Ampule Fill & Seal (Process)
 - Lithium Lamination Process
 - Brainstorming Review
 - Critical Design Review
 - Each Machine/Process
 - Release Component Fabrication
 - Proveout at RD Systems
 - Modified First Article
 - Final Acceptance KDI

SDF (PIP)

- Two (2) Integrated Product Improvements
 - Packaged EED
 - Packaged IC

SDF (PIP) Current EED Design

- The Current EED Has Three (3) Explosive Elements That Are Loaded Into the Fuze and Consolidated
- After Consolidation, a Cover and Encapsulate Are Placed on Top of the Explosive Elements

Communications, KDI Pre-

SDF (PIP) Packaged EED Design

• The Packaged EED Is a Two (2) Pin Hermetic Sealed Detonator

- The Packaged EED's are Inserted Into
- Receptacles That Are Surface Mounted on the PWB

8 Communications, KDI Pre

Proprieta

SDF (PIP) Packaged EED Advantages

- Reduces the Printed Wiring Board Complexity
- Assembly Process Is Less Complicated
- Lot Acceptance Can Be Performed at the Component Level
- Explosive Output Is 1.5 Times Greater
- Requires Less Energy to Fire

SDF (PIP) Current IC Assembly Design

The Current PWB Employs III
 Chip-on-Board (COB)
 Technology

3 Communications, KDI Pre

SDF (PIP) Packaged IC Assembly Design

 The Packaged IC Design Contains the Same Die Which Is Placed in an Micro Lead frame Package

ANSI-RAB OMS CONFICT OF CONFICATION OF CONFICT OF CONFICT OF CONFICT OF CONFI

37

SDF (PIP)Packaged IC Advantages

- Assembly Is Greatly Simplified
- Increase in Throughput
- Increase in Yield
- Test at the Component Level
- Design Is More Robust

SDF (PIP) Test History

- Packaged EED
 Qualified to MIL-I-23659 by USN
- Packaged IC
 Structural Test to Confirm Robustness
- Flight Test
 Worst Case Environments

SDF (PIP) Packaged IC Structural Performance

- Both Specification and Margin Test Were Performed on the Same Hardware Set
- Test Performed Following 160 Thermal Shock Cycles (Specification Requires Eight)

SDF Warm Line & GMLRS Fly Off Tests (PIP) Flight Test

- M915 Artillery
- M915 Artillery (Hot)
- M915 Artillery (Cold)
- GMLRS @ 16 Km
- GMLRS @ 20 Km
- GMLRS @ 65 Km (Hot)
- GMLRS @ 65 Km (Cold)
- GMLRS @ 19.5 Lm (Cold)

GMLRS Mission Reliability 97% UXO's & 99.6% Hazardous Duds

SDF Integrated Schedule

	2003						2004											2005				
The second s	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR		
Battery HRE Program	-												-									
Acceptance @ KDI					-					- 1							-	-				
First Article																						
Operational Sequence																						
T&H Testing					-				∇													
Battery Production					-																	
M234 Fuze First Article																		_				
Contract Release 06/2003																				-		
First Article Assembly						-			∇													
Complete Testing (KDI)									∇													
Complete Ballistic Testing						2011				\checkmark												
M234 Fuze Production																						

SDF Integrated Schedule

	2003												2004							
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
XM236 PIP Qualification									-											
Design , Assemble, & Test	-																			
Release Qualification Contract																	$\mathbf{\nabla}$			
Fabricate, Assemble, & Qualification Test									$\overline{}$											
						-														
XM235 PIP Fuze Testing	_					S hia				ee a										
GMLRS Guided Special Test (101 Fuzes)			$\mathbf{\nabla}$																	
GMLRS Guided Special Test (303 Fuzes)							$\mathbf{\nabla}$													
GMLRS Launcher Testing										$\mathbf{\nabla}$										
Fuze Fly to Buy	-											V								
GMLRS Production	-				-	R ational States			-			-						P	TC	

