HIGH ACCURACY RADAR PROXIMITY SENSOR

48th Annual NDIA Fuze Conference

Presented by Bob Hertlein
robert.hertlein@L-3com.com
Outline

HARPS

• Background
• Application
• Features
• Design
• Program Status
Background

HARPS

- Conceived as an updated design to compete with the DSU-33
- KDI bid alternative design to USAF
 - Based on M734A1 technology
- Exportable version developed for FMS in conjunction with Ordnance Technologies (UK) Limited (OTL) and Electronics Development Corp. (EDC)
Current DSU-33 Prox Sensor

HARPS
Application

HARPS

- Fit, Form and Function replacement for existing DSU33
- Air burst capability for standard MK80 series weapons using either FMU139 or FMU152 fuzes and FZU48 and FZU55 initiators.
Features

HARPS

• Improved Height of Burst (HOB) control
• Improved resistance to jamming
• Hermetically sealed sensor electronics
 – Improved reliability
 – Extended shelf life (20yrs)
Design

HARPS

- Objectives
- Signal Processor
- Transceiver
- Antenna
- Interface
- Battery
Design Objectives

HARPS

• Improve Accuracy and Burst Height Control
• Improve ECM resistance
• Improve tolerance to Stick Release
• Improve Reliability
• Improve Storage Life
Design Objectives

HARPS

• HOB: 5 ±1 Metres over following conditions:
 • Approach Velocity from 30-500 m/sec
 – Approach Angles from 15° to 90° from horizontal
 – Target surfaces of
 • Soil (Wet and Dry)
 • Concrete (Wet and Dry)
 • Water
 • Dense Foliage
 • Desert Scrub
 – Target Reflectivity range +5dB to -16 dB
Signal Processor

HARPS

- Direction Doppler Ranging (DDR)
 - Original demonstrator units utilized M734A1 Signal Processor
 - Current design uses KDI-100 DDR Signal Processor
 - Fully integrated, single-chip signal processor
 - Doppler passband and reference waveforms tailored to application
Transceiver

HARPS

- First prototypes utilized exportable version of M734A1 transceiver
 - Fully integrated transmit and receive functions
 - Unacceptable performance variations over the wider temperature range
 - High Cost

- Current HARPS design utilizes a less integrated transceiver design
 - Oscillator separate from detector electronics
 - Parameters very stable over temperature
 - Versatile, low cost
Antenna

HARPS

- Circular patch mounted on extended ground plane
- Fed via hermetic feedthrough
 - Glass-to-metal seal welded to housing
- Extremely rugged
Sensor Cutaway View

HARPS

RADOME

PATCH ANTENNA

TOP PLATE

TRANSCIEVER PROCESSOR BOARD

INTERCONNECT CABLE

ANTENNA COVER

HERMETIC FEEDTHRU

INTERFACE BOARD

HOUSING

HERMETIC CONNECTOR
Interface

HARPS

- Interface PWB Supplied by OTL
- Interfaces to Initiator, battery, fuze
 - Initiitor Interface
 - +32 to +150V at 2.5mA max for 1.2 sec (FZU48 & FZU55) or
 - +195 volts or -195 volts (±4%) at <25mA for 15 - 500 ms (FFCS)
Interface

HARPS

- **Firing Signal Interface**
 - 30mA (min) into 470Ω for >100μsec
 - 33,000 ergs into 4Ω within 200μsec
 - Compatible with FMU152A/B, FMU55A/B, FMU139A/B, FMU139B/B & FMU139C/B

- **Electrical Connection**
 - Interfaces directly with FZU as per existing Mk80 weapon system designs.

- **Mechanical Interface**
 - Screw fit to Mk80 front fuze pocket.
Battery

HARPS

• Thermal Battery
 – Current Design uses same Thermal Battery as DSU-33
 – 32 Volt battery far exceeds power requirements for HARPS
 • Significant power dissipating circuitry required
 • Design has potential to use lower voltage battery
 – Significant cost savings possible
HARPS Cutaway View
HARPS Photo
HOB Test Data

HARPS HOB VS REFLECTIVITY

HARPS

HOB (M) vs. SURFACE REFLECTIVITY (dB)
Program Status

HARPS

• 5 Units recently shipped to French DGA
 – Trials to take place early summer
 • Ground test
 – System test with Pyrotechnic Indicator
 • Flight Testing (Mk82 Bomb system)
 – Captive Carriage
 – Inert release with Pyrotechnic Indicator
 – Live release with FMU-139B/B

• Additional International opportunities
Conclusion

HARPS

- Form, Fit, Functional DSU-33 replacement
- Enhanced Performance
 - Tighter HOB
 - Jam Resistant
- High Reliability
- Extended Storage Life
- Low Cost