

KDI Precision Products, Inc. 3975 McMann Road Cincinnati, Ohio 45245-2395

HIGH ACCURACY RADAR PROXIMITY SENSOR

48th Annual NDIA Fuze Conference

Presented by Bob Hertlein

robert.hertlein@L-3com.com

Outline

- Background
- Application
- Features
- Design
- Program Status

Background

- Conceived as an updated design to compete with the DSU-33
- KDI bid alternative design to USAF
 - Based on M734A1 technology
- Exportable version developed for FMS in conjunction with Ordnance Technologies (UK) Limited (OTL) and Electronics Development Corp. (EDC)

Current DSU-33 Prox Sensor

Application

- Fit, Form and Function replacement for existing DSU33
- Air burst capability for standard MK80 series weapons using either FMU139 or FMU152 fuzes and FZU48 and FZU55 initiators.

Features

- Improved Height of Burst (HOB) control
- Improved resistance to jamming
- Hermetically sealed sensor electronics
 - Improved reliability
 - Extended shelf life (20yrs)

Design

- Objectives
- Signal Processor
- Transceiver
- Antenna
- Interface
- Battery

Design Objectives

- Improve Accuracy and Burst Height Control
- Improve ECM resistance
- Improve tolerance to Stick Release
- Improve Reliability
- Improve Storage Life

Design Objectives

- HOB: 5 ±1 Metres over following conditions:
- Approach Velocity from 30-500 m/sec
 - Approach Angles from 15° to 90° from horizontal
 - Target surfaces of
 - Soil (Wet and Dry)
 - Concrete (Wet and Dry)
 - Water
 - Dense Foliage
 - Desert Scrub
 - Target Reflectivity range +5dB to -16 dB

Signal Processor

- Direction Doppler Ranging (DDR)
 - Original demonstrator units utilized M734A1
 Signal Processor
 - Current design uses KDI-100 DDR Signal Processor
 - Fully integrated, single-chip signal processor
 - Doppler passband and reference waveforms tailored to application

Transceiver

- First prototypes utilized exportable version of M734A1 transceiver
 - Fully integrated transmit and receive functions
 - Unacceptable performance variations over the wider temperature range
 - High Cost
- Current HARPS design utilizes a less integrated transceiver design
 - Oscillator separate from detector electronics
 - Parameters very stable over temperature
 - Versatile, low cost

Antenna

Circular patch mounted on extended ground plane

- Fed via hermetic feedthrough
 - Glass-to-metal seal welded to housing
- Extremely rugged

Sensor Cutaway View

Interface

- Interface PWB Supplied by OTL
- Interfaces to Initiator, battery, fuze
 - Inititiator Interface
 - +32 to +150V at 2.5mA max for 1.2 sec (FZU48 & FZU55) or
 - +195 volts or -195 volts (±4%) at <25mA for 15 -500 ms (FFCS)

Interface

HARPS

• Firing Signal Interface

- 30mA (min) into 470Ω for >100µsec
- 33,000 ergs into 4Ω within 200µsec
- Compatible with FMU152A/B, FMU55A/B, FMU139A/B, FMU139B/B & FMU139C/B
- Electrical Connection
 - Interfaces directly with FZU as per existing Mk80 weapon system designs.
- Mechanical Interface
 - Screw fit to Mk80 front fuze pocket.

Battery

- Thermal Battery
 - Current Design uses same Thermal Battery as DSU-33
 - 32 Volt battery far exceeds power requirements for HARPS
 - Significant power dissipating circuitry required
 - Design has potential to use lower voltage battery
 - Significant cost savings possible

HARPS Cutaway View

HARPS Photo

HOB Test Data

Program Status

- 5 Units recently shipped to French DGA
 - Trials to take place early summer
 - Ground test
 - System test with Pyrotechnic Indicator
 - Flight Testing (Mk82 Bomb system)
 - Captive Carriage
 - Inert release with Pyrotechnic Indicator
 - Live release with FMU-139B/B
- Additional International opportunities

Conclusion

- Form, Fit, Functional DSU-33 replacement
- Enhanced Performance
 - Tighter HOB
 - Jam Resistant
- High Reliability
- Extended Storage Life
- Low Cost

