NDIA 48th Annual Fuze Conference Weapon Fuzing / Safety & Arming Technology Programs Overview NSWC / Indian Head Division

John Hendershot

(Code 4420: Phone 301-744-1934 or e-mail hendershotje@ih.navy.mil)

Fuze Safety & Arm Branch Lead

OUTLINE

 Torpedo Fuze/S&A Technology Efforts

Sensor Output During X-Axis Shock Pulse

02

03

Λ

- MEMS G-Sensor Technology
- Next Generation Miniature Fuze/S&A Technology
- Summary

NAVSEA WARFARE CENTERS

- CCAT S&A Program Status

- Design and fabrication proven through prototype development (FY02-03)
- Successful WSESRB Executive session brief March 03
- Currently refining EDM-1 S&A design and integration for CCAT
 - Over 150 integrated initiator tests, additional 200+ shots planned for CY04
 - Advanced IMU sensors development for CCAT S&A (ONR-FNC)
 - MEMS S&A environmental & life cycle test (HALT) series on going
 - System launch & CCAT sea-tests with fully integrated S&A scheduled for CY 04

S&A Briefed in Session IV-B

- Integrated Initiator Effort

Objective:

• Develop Miniaturized,Low-Cost, Integrated, High Voltage Slapper Initiation System

Approach:

- Team with DOE (Honeywell FM&T) to develop Advanced Miniature High Voltage Initiation System
- Integrate all high voltage lines into package, minimize input requirements...power, ground, trigger signal, system on
- Small total size...~1 cu in

Status:

- Completed Phase I initiation system functional & explosive performance & characterization tests (125)
- Executing Phase II, refining fire-set, slapper & explosive component design to reduce parts & assembly steps
- Integrating into dual point initiated CCAT warhead

Briefed in Session IV-B

Torpedo S&A Technology - IMU for Close-In Ship Defense

OBJECTIVE:

• Adapt a low cost, small volume Inertial Measurement Unit (IMU) for accurate determination of safe separation

STATUS:

- Evaluated COTS IMU's for CCAT S&A
 - IMU Simulation Analysis
 - Bench tests
- Selected Systron-Donner MMQ50 for further development tests
- Conducting IMU algorithm development
- Developing IMU electronics and packaging

Allows **close-in engagements** at **minimum safe separation distance**

MMQ50 IMU

CCAT S&A

- Micro-Systems Packaging Technology

Objective:

• Develop & demonstrate robust, reliable & manufacturable MEMS packaging technologies for CCAT S&A application

Approach:

- Integrate packaging structures/features with MEMS devices and fabrication techniques
- Adapt low cost MEMS and IC industry packaging technology
- Robustness evaluation through Highly Accelerated Lifecycle Testing (HALT) & MIL-STD 331 tests

Status:

- Successfully demonstrated all individual MEMS (CCAT) S&A packaging steps
- Near completion: integration of all packaging steps in assembly sequence
- Fully packaged CCAT S&A to be demonstrated in at-sea field testing starting in 1Q FY05

- Highly Accelerated Lifecycle Testing (HALT) of S&A **OBJECTIVE:**
- Determine failure modes in current MEMS S&A components caused by harsh ٠ temperature and vibration environments using Sandia National Laboratory HALT facilities - leveraging DOE TCG-X Investment

BENEFITS:

- Provide an early look at MEMS device level vulnerabilities •
- Induce environmental failures in MEMS S&A packaging •
- Determine temperature compatibilities of system materials beyond MIL-STD levels •
- Receive insight into monitoring features to be incorporated into subsequent MEMS • S&A designs

STATUS:

- Indian Head packaged MEMS devices for test
- Sandia developed HALT compatible visual and electrical data • acquisition systems
- Phase I HALT scheduled at the end of April on discrete MEMS • components
- Phase II HALT to be performed on a more integrated system 2-3 • months after Phase I

MEMS Technology for CCAT S&A Matured to TRL 6+

Torpedo S&A Technology - Technology Maturity cont.

NAV

ΑΙ

R

	S&A Technology Prototype	S&A Spiral 2 Prototype
	CCAT S&A prototy development successfully transitioned techno	vpe logy
MEMS Processing Method for S&A Chip	LIGA; ~ \$1000 per chip (FY2000) (qtys of 100's)	DRIE; \$200 per chip (qtys of 100's)
Arming Time	> 5 seconds	< ½ second
CAT Interfaces	Not networked with CCAT	Fully networked and interfaced with CCAT
S&A Explosive Train	Discrete initiator components	Integrated initiation system
IMU – Drift rate accuracy	300 deg / hr	Current 100 deg / hr (FNC IMU = 30 deg / hr)
S&A Chip Packaging	Non-hermetic, labor intensive package	Hermetic, robust and producible packaging

Advanced Technology Ordnance Surveillance (ATOS)

- Advanced Concept Technology Demonstration FY 01 04
- Demonstrate operational utility of miniature radio frequency identification (RFID) tags coupled with micro-electromechanical sensor (MEMs) technology for use in tracking/monitoring critical items

ATOS-RFID SYSTEM - Integrated MEMS G-Sensor(s) Technology

- Spring supported mass deflects into latch when G-Sensor undergoes a defined shock.
- ATOS-RFID records shock event when G-Sensor latched

NSWCIH patent pending

Latched Sensor

200× 20.9 kV^{100/m} 58 m

Multi-Level Sensor

Status of Sensor Development

- Five design iterations completed to date.
- All sensors tested have been accurate to within ±3%.

Sensor Attributes

- No power needed to record shock.
- Can be electronically reset.
- Latch levels from 25 to 1500 g's.
- Advanced designs include multi-level and multi-directional.
- Sensor size: 6 by 3 mm.

Over 1000 MEMS G-Sensors Successfully Fabricated to Date

MEMS F/S&A Next Generation Technology - Modular MEMS Fuze

- Integrate Electronics, S&A, Explosives into a Multi-Chip Module to:
 - Reduce Cost and Size
 - Increase Shock Survivability, Reliability, & Robustness
 - Modular Design enables swapping sensors and electronics while retaining standard S&A and explosive design

MEMS F/S&A Next Generation Technology - MEMS G sensor for High G Application

- NEE Collaborative effort with Dahlgren Fuze group
- Test samples not designed for high shock survivability
- DRIE SOI MEMS Sensors
- Two ATOS (prototype) sensors per chip designed to latch at 360 and 720 G
- Conducted 14 Setback tests from 1500 to 30,000 G's & 2 Cross-axis test (28,700 G max)
- Test Results
 - No observable damage to the substrate
 - 1 of 96 latches damaged below 25,000 G's
 - Approximately 10% of the components damaged between 25,000 & 30,000 G's

Cross-axis

Setback

* Damage attributed to non-optimized design features

High Shock Functionality & Survivability Demonstrated with MEMS G-Sensor

Briefed in Session V-A

Micro Detonics for Next Generation - Miniature F/S&A Applications

Objective:

- Develop MEMS based S&A technology with integrated energetic materials
 - Goal: Develop detonator that is less than 400µm thick

Approach:

- An *in situ* formed explosive compatible with MEMS processing requiring no assembly
- No explosive waste or contact with MEMS processing equipment
- Physically out of line system utilizing inorganic salts as donor explosive
- Develop batch MEMS and explosive forming processes to minimize fabrication costs
- Leverage COTS MEMS processing
- Low initiation energy and power requirements

NSWCIH patent pending

Dime Dent

- Initial explosive forming reactions have been very successful
- On-going efforts
 - Characterization
 - Pre-reacted material
 - Explosive material
 - Process optimization.
 - Testing
 - Basic explosive output characterization
 - Demonstrated 1500µm translation
 - Integration
 - Developing batch process for building S&A device
 - Initiated MEMS & micro detonics compatibility investigations & spark initiated integrated detonator

NSWCIH patent pending

Micro Detonics for Next Generation -Miniature F/S&A Applications

Integrated Detonator Proof of Principal Experiment

- Before Detonation

- After Detonation

NSWCIH patent pending

S&A Chip

High Speed Video

Micro Detonics Technology Status = TRL 3

Indian Head Division Micro-System Technology Development Partners

- MEMSCAP, MEMS Exchange
 - MEMS and slapper foundry processing
- Applied Physics Lab JHU
 - MEMS packaging and processing
- University of Maryland
 - Optics and packaging R&D
- Rensselaer Polytechnic Institute
 - MEMS packaging, manufacturing research
- Honeywell FM&T
 - Miniature Fireset and Optical Interrupt

MEMSCAP The Power of a Small World

Summary Slide

The Path Forward ...

• Coordination & collaboration between the Navy Energetics Labs ... the NEE

• Tri-Service & DOE coordination & collaboration ... DoD Fuze IPT & TCG

• Teaming with Industry & Academia ... DOTC, BAA's

• S&T in Advanced Sensors, Miniaturized (MEMS) & Modular S&A Architectures, and Miniaturized Energetics ... *Fuze Technology for the Warfighter*

