Pyrotechnic Bomblet
Self Destruct Fuze (SDF) for GMLRS

Presentation for 48th Annual Fuze Conference
April 26th - 28th, 2004
Charlotte, NC

by Rudolf Harbrecht
Locations

Schramberg: administration, sales and machine shop for components

Seedorf: R&D and assembly shop
Organisation and Management Structure

Diehl VA Systeme
W. Reinl: CEO R. Ott: CFO

Defence Systems
- Bodenseewerk Geräteotechnik
- Diehl Munitions - Systeme
- AEG Infrarot-Module
- Diehl VA Systeme

Vehicle Systems
- Diehl Remscheid
- IWS Industriewerke Saar
- JUNGHANS Feinwerktechnik

Avionics
- Diehl Avionik Systeme
- Diehl Luftfahrt Elektronik

Human Resources
Quality Management
Liaison Offices
Purchasing / Customs / Compensation
Organisation / Information Technology
Public Relations
Export Control
Security
Controlling

A Company of
Diehl VA Systeme
Wide Product Range at JUNGHANS Feinwerktechnik:

Mechanical and Electronic Fuzes For:
- Artillery Ammunition
- Mortar Ammunition
- Tank Ammunition
- Anti-Tank Ammunition
- Medium Calibre Ammunition
- Rockets
- Submunition
- Safety & Arming Devices
• Company Experience in MLRS and Self destruct Fuzes for Grenades
Electronic Time Fuze for European MLRS AT2

- From 1993 to 1997 production of more than 10,000 fuzes
Bomblet Fuze DM 1384

- Self destruct Fuze for 155mm Artillery Shell (15 sec delay)

- in production from 1988 to 1992
- more than 12 mio produced maximal daily rate of 20,000 SDF
- actual firings do not show any degradation in performance
Development of a Self-Destruct Fuze for M77 Grenades with a delay time of 25 seconds.
Co-Operation Partners

• JUNGHANS Feinwerkechnik and GIAT Industries have teamed in their experiences to provide a Self Destruct Fuze (SDF) for GMLRS bomblets
Development Phase

- **JUNGHANS** started the development in December 2001. The major requirements for the development of the SD-Fuze are:

 - **the weight:**
 - the SDF weight should be less than 20g

 - **the impact functioning rate**
 - more than 95%

 - **the hazardous dud rate:**
 - less than 1% (desired 0.1%)

 - **the delay time:**
 - within temperature range: \(T \geq 25 \text{ sec} \)

 - **the temperature range:**
 - function: from -32°C to +60°C
SDF DESIGN (1) Design

- upper fuze body
- locking pin
- safety pin
- delay chain
- slider
- spring
- lower fuze body
- firing pin
- nut
- weldingcup
- rotor assembled
- torsion spring
SDF DESIGN (2)

Hazardous Classification:
in packaging 1.4 D
out of packaging 1.4 D

- ribbon assembled
- welding cup
- safety pin
- lower fuze body assembled
- upper fuze body assembled
- rotor assembled
- spring
SDF DESIGN (3)

- lower fuze body
- output relay
- slider
- rotor assembled
- torsion spring
- delay cord
- input relay
Bomblet Body with SD - Fuze

SD-Fuse on inert Bomblet:
Hazardous Classification:
- in packaging: 1.4 D
- out of packaging: 1.4 D

Laser Welding
Functioning Modes of the SDF

1. **Bomblet Dispense**
 - Ribbon unfolded, locking pin pulled

2. **Slider Travels Forward**

3. **Slider Releases Rotor**

4. **Ribbon Winds**
 - Firing pin

5. **Firing Pin Releases Rotor**

6. **Rotor Armed**
 - NO
 - YES

7. **Target Hit (Impact Mode)**

8. **Target Impact**
 - NO
 - YES

 a. **Firing Pin Initiates Detonator M55**

 b. **Bomblet Detonates**

9. **Neutralisation (SD-Mode)**
 - Output relay initiates detonator M55
 - Bomblet neutralised

10. **Destruction (SD-Mode)**
 - Output relay initiates detonator M55
 - Bomblet detonates

11. **Ignition of SD Mode**

 - Yes
 - No
Functional Characteristics

1st step after dispense:

⇒ ribbon unfolded
 (aerodynamical effect)

⇒ locking pin removed

⇒ slider unlocked
Functional Characteristics

2nd step:
- Slider moves in armed position and initiates input relay
- Slider released rotor to arm
- SD - mode active

Rotor in unarmed position

Spring

Slider
Functional Characteristics

3rd step:
⇒ ribbon unscrews the firing pin (left handed thread)
⇒ rotor is unlocked
4th step:

⇒ rotor turns in armed position

⇒ fuze is armed

marking with red colour, "armed position"

rotor in armed position
Functional Characteristics

• Firing Pin Initiates the M55 Stab Detonator
 ⇒ Primary Mode: Impact

5th step:
⇒ target impact
⇒ firing pin initiates M55 stab detonator
Functional Characteristics

- Output Relay Initiates the M55 Stab Detonator

⇒ Secondary Mode: SD - Mode (complete Bomblet)
Functional Characteristics

- Output Relay Initiates the M55 Stab Detonator of an unarmed SDF
 ⇒ Back up Mode: Neutralization - Mode (complete Fuze)
General Schedule

• **Demonstration Phase**
 – May 2000 to November 2001
 – Status: performed on schedule

• **Development Phase**
 – December 2001 to December 2004
 – GMLRS - Qualification forth quarter 2004

• **Industrialisation Phase**
 – on customer request
 – possible start July 2004
Draft updated Test Plan for Development Phase

A Company of
Diehl VA Systeme

A Company of
Diehl VA Systeme
Results of BFT5 and BFT5a Flight Tests (1)

- **BFT5 at Meppen Proving Ground**
 - Scheduled November 16th 2003
 - 3 MLRS rockets
 - SDF Design with 25 sec. Delay Element
 - range: 2 rockets on approx. 11 km, one rocket on approx. 20 km
 - temperature: 1 rocket at +60°C, 1 rocket at +51°C, 1 rocket at -32°C

Results:

- a dud rate less than 1% could be proved
- a reliability of more than 97% for the delay chain could be proved
- the required impact functioning rate of more than 95% was missed
Results of BFT5 and BFT5a Flight Tests (2)

- **BFT5a at Meppen Proving Ground**
 - Scheduled March 15th 2004
 - 1 MLRS rocket
 - SDF Design three configurations, impact functioning mode only
 - range: approx. 11 km
 - temperature: ambient

Results:
- an impact functioning rate of 95% could be proved with one configuration
- an overall arming reliability of more than 99% could be proved
- dud rate was not subject for prove
Upcoming Tasks

• **Flight Test DVT3 / Fly-Off2 at WSMR**
 - scheduled June 2004
 - 2 GMLRS Rockets
 - each rocket is equipped with 404 bomblets from two vendors, 202 from each
 - 50% of the bomblets are w/o delay chains for impact functioning rate prove, 50% of the bomblets are fully equipped for proving full functioning rate, dud rate and UXO rate
 - Temperature: hot (60°C/140°F)
 - Range: approx. 20 km

• **PQT**
 - scheduled October 2004
 - 9 GMLRS Rockets with 404 bomblets each,
 - 50% impact functioning mode only, 50% full functioning mode
 - full STANAG environmental Ground Tests