

Development of a Heavy Metal-Free Electric Detonator

04/26/2004 NDIA Fuze Conference

Author: Gartung Cheng RDECOM Chemical Engineer

Co-Authors: Neha Mehta - RDECOM Bobby Lateer - RDECOM Kathy Yang – GEO-CENTERS, INC. Daniel Stec III – GEO-CENTERS, INC.

Introduction

- Current issues with primary initiating explosives are:
 - No Lead Azide production in the US
 - Environmentally hazardous
- Initiated a program to develop new heavy metal free primary initiating explosives for the production of "green" bridgewire detonators.

Program Objectives

- Produce Heavy Metal-Free initiating explosives.
- Replace Heavy-Metal energetic materials in bridgewire detonator.
- Reduce soldiers', workers' and the environment's exposures to lead.

Traditional Detonator

Stab Detonator

Electric Detonator

Electric Detonator

End Items Impacted

- Detonators
 - Electric
 - MK1
 - M100
 - Stab
 - M55
 - M61

Compounds Tested for Green Detonator

Compound	Properties	Tests	Results
		Impact	Primary
DAHA	Solid	Bridgewire	Explodes
		MK1 detonator	Full detonation with A-5
			booster pellet
		Impact	Primary
EDNAP	Solid	Bridgewire	Burns
		MK1 detonator	One successful detonation
		Impact	Secondary
HNP	Solid	Bridgewire	Burns
		MK1 detonator	Burns
		Impact	Insensitive secondary
1,3-diazidoacetone DNPH	Solid	Bridgewire	Not tested
		MK1 detonator	Not tested
		Impact	Primary
1,3-diazido-2,2-dinitropropane	Liquid	Bridgewire	Flash/burn
		MK1 detonator	Flash/burn
tris(azidomethyl)nitromethene		Impact	Primary
	Liquid	Bridgewire	Flash/burn
		MK1 detonator	Not tested

MK-1 Detonator Loading Setup

MK-1 Detonator DAHA Testing

	Weight (mg)				
Cup #	DAHA	CL-20	RDX	Result	
1	X		X	DAHA initiated. Large flash. RDX initiated. Complete detonation transition.	
2	Х	Х		DAHA initiated. Larger flash than in 1. CL-20 initiated. Complete detonation transition.	
3	X			Large flash and flame.	
4	X	X	X	Complete detonation transition.	
5	X	X		Cup confined, fired against Al witness plate: detonation, plate cracked.	

DAHA Testing – Full Detonation Train

	Weight (mg)				
Cup#	DAHA	CL-20	RDX	Configuration	Result
1	100	800	-	Ι	DAHA initiated. Cup split. CL-20 still in cup.
2	150	800	-	II	Complete detonation transition. Large dent in witness plate
3	200	800	-	II	Complete detonation transition. Witness plate destroyed, only small pieces found
4	150	300	500	II	Complete detonation transition. Large dent in witness plate. Center sleeve destroyed.

Test Blocks Fired with A-5 Booster Pellet

- MK-1 detonator loaded with DAHA as the initiating explosive and RDX, CL-20 or both materials as the secondary energetics were successfully functioned.
- Successfully functioned and initiated the whole initiating train against A-5 booster pellets and complete firing train.
- Identified additional initiating materials for testing.