Testing and Analysis of Piezoresistive Signals from SiC MEMS Accelerometers with Application to Penetration Fuzing

Ken Bradley, 1st Lt Fuzes Branch Munitions Directorate Air Force Research Laboratory

48th Annual NDIA Fuze Conference Charlotte, NC 28 April 2004

- Research Team
- Objectives
- Background
- Design and Fabrication
- Evaluation
- Results
- Accomplishments
- Future Work
- Conclusion

- **AFRL Munitions Directorate**
 - Fuzes Branch: Dr. Alain Beliveau, Dr. Alex Cash,
 1Lt. Ken Bradley, Mr. Jason Foley
 - Dr. Scott Roberson (now at SAF/AQ)
- NASA Glenn Research Center
 - Dr. Robert Okojie
- Cornell University
 - Prof. Kevin Kornegay, Dr. Andy Atwell (now at IDA)

- Develop a scientific understanding of...
 - Stress distribution and concentration
 - Microstructural transformation
- ... for devices functioning in *harsh environments* to better predict failure and improve sensitivity

- High Stress/Pressure
 - High Temperature (>250°C)
 - High Power/Voltage (switches, μ–wave)
 - Corrosion
 - **Erosion and Wear**
 - Radiation
 - **Shock and Vibration**

Background

SiC selected as material...

- Wide Bandgap 2 x Silicon
- High Thermal Conductivity
- Polytypic (3C, 6H, ...)
- Chemically Inert
- Superior Mechanical Properties over Si
 - 3 x Yield Strength
 - 3.5 x Young's Modulus
 - Similar strains... due to greater max yield strength

Device Concept:

Suspended membrane with piezoresistive elements (mesas)

- Epilayer deposition
 - PECVD
- Bulk micromachining of silicon carbide
 - Reactive Ion Etch (Anisotropic)

Source: K. Kornegay, Cornell U.

Design and Fabrication

- Device series:
 - 1. Cornell Types 1-3
 - 2. NASA Generation 1
 - 3. NASA Generation 2

2. Optical micrograph of Gen 1 NASA sensor (no boss)

1. SEM micrographs of the Cornell designs

3. SEM micrograph of Gen 2 NASA sensor (with boss)

Sample SiC MEMS Layout (NASA Generation 1)

Sample SiC MEMS Operation (NASA Generation 1)

Wheatstone Bridge

Evaluation

- Microcharacterization
 - SEM, XRD, etc.
- Stress Evaluation (Accelerometers)
 - Steady State (Centrifuge):
 Calibration
 - Dynamic (Shock Machine): Real Time Data
 - Temperature: Internal Stress Development
- Develop feedback for future designs, understanding of fundamental mechanisms

Evaluation

Very High-g (VHG) Machine

- Dynamic Test to Failure
- Determine Real-Time Stress from Centrifuge Data
- Separation of Design and Material Properties Failures
- Serves as Baseline for Empirical Modeling
- VHG allows determination of failure due to mechanical stress and resonance frequency phenomenon

Baseline: Endevco 7270A

- Peak mag up to 200k x g
- Survivable

Cornell University Types 1-3 Simple membrane devices

- SiC MEMS device matched output of Industry
 Standard
 Endevco 7270
 Accelerometer
 within 5% up to
 20k x g
- Very low sensitivity (75 nV/g) compared to Endevco (4 μV/g)

Black – Endevco 7270 Gray – SiC MEMS (CU1)

NASA Generation 1

Innovative design with boss for increased sensitivity

A SEM micrograph of the backside deep reactive ion etch for the NASA bossed sensor.

- NASA SiC MEMS matched output of Endevco 7270 to 8k x g
- Survived to 80k x g
- Sensitivity:
 0.125 μV/g

Blue– Endevco 7270 Red – SiC MEMS (NASA1)

- Strong "cross axis" sensitivity or cross axis resonance mode was observed ~9k x g
- Cross axis sensitivity increased with increasing axial g's, dominating signal
- New design: no boss

Blue– Endevco 7270 Red – SiC MEMS (NASA1)

NASA Generation 2

No boss for decreased cross-axis sensitivity

Results

- Matched output of Endevco 7270 until a dominating resonance mode around 1.3 msec
- Output recovered around 1.6 msec and matched that of the Endevco 7270

Blue – Endevco 7270 Red – SiC MEMS (NASA2)

Repeatable results

 Matched the Endevco 7270 first peak intensity very well

Blue – Endevco 7270 Red – SiC MEMS (NASA2)

- Three Generations of SiC MEMS have been modeled, fabricated and evaluated for Stress development
 - Cornell University Types 1-3
 - Simple Round Membrane
 - Easy to model, fabricate and interpret scientific data
 - NASA Glen Research Center Generation 1
 - Complex designs for Improved Sensitivity
 - More Difficult to Interpret Data but more sensitive
 - NASA Glen Research Center Generation 2
 - Redesigned to avoid problems from gen 1

- Established MOA with NASA Glenn Research center for Long-Term, Joint SiC MEMS Collaboration
- First Published Peer Reviewed Journal Article on SiC MEMS: *IEEE Journal of Sensors and Actuators A 104, 2003 (11-18)*
- First Conference Paper on Operating SiC MEMS: Jan 02 IEEE Conference, Las Vegas, NV
- PhD Dissertation at Cornell University by Dr. Andy Atwell: Modeling, Simulation, and Fabrications of SiC MEMS

- Funded by AFOSR and NASA Glenn

- Material effects of thermomechanical cycling
 - Thermal cycling coupled with mechanical cycling
- Improving device function and reliability
 - Increasing axial sensitivity
 - Decreasing cross-axial sensitivity
 - Reducing bias
- Enhanced "nondestructive" evaluation *in situ*
 - Velocity interferometer (VISAR)

- Investigating microstructural changes
 - Defects
 - Hysteresis
 - Phase changes
- Initial shock tests of 1st generation NASA GRC accelerometers
- 2nd generation NASA GRC accelerometers (4Q04)

- SiC MEMS that function in harsh environments have been demonstrated
 - Fabricated (Cornell, NASA Glenn)
 - Tested (AFRL/MN)
- Improvements necessary to achieve desired functionality
 - Problems with cable noise, sensitivity, cross-axis
- Continuing investigation by focusing on fundamental mechanisms will enhance effort

End of Presentation

Backup Slides

 Atwell, Andrew R., Okojie, Robert S., Kornegay, Kevin T., Roberson, Scott L., and Beliveau, Alain, 2003, "Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers," Sensors and Actuators A, 104, pp. 22-18.

Atwell et al, 2003, Sens Act A, 104, pp 11-18.pdf

 Okojie, Robert S., Atwell, Andrew R., Kornegay, Kevin T., Roberson, Scott L., and Beliveau, Alain, 2002, "Design Considerations for Bulk Micromachined 6H-SiC High-g Piezoresistive Accelerometers," Tech. Digest 15th IEEE Intl. Conf. on MEMS, Las Vegas, Nevada (Jan. 20-24, 2002), pp. 618-622.

Okojie et al, 2002, Tech Dig 15th IEEE Conf MEMS, pp 618-622.pdf

SiC: Mechanical Properties

Property Table

Percentages in parentheses denote estimated combined relative standard uncertainties of the property values. For example, 3.0(5%) is equivalent to 3.0 + - 0.15. Property values in parentheses are extrapolated values.

Property [unit]	20 °C	500 °C	1000 °C	1200 °C	1400 °C	1500 °C
Bulk Modulus [GPa]	203 (3%)	 197	 191	 188	 186	184
Creep Rate [10 ⁻⁹ s ⁻¹] at 300 MPa	0	0	0	0.004(17%)	0.27	1.6
Density [g/cm ³]	3.16(1%)	3.14	3.11	3.10	3.09	3.08
Elastic Modulus [GPa]	415(3%)	404	392	387	383	380
Flexural Strength [MPa]	359(15%)	359	397	437	446	446
Fracture Toughness [MPa m ^{1/2}]	3.1(10%)	3.1	3.1	3.1	3.1	3.1
Friction Coefficient [], 0.2 m/s,5 N	0.7(21%)	0.4	0.4			
Hardness (Vickers, 1 kg) [GPa]	32(15%)	17	8.9	(6.9)	(5.3)	(4.6)
Lattice Parameter a(polytype 6H) [Å]	3.0815(0.01%)	3.0874	3.0950	(3.0984)	(3.1021)	(3.1040)
Lattice parameter c(polytype 6H) [Å]	15.117(0.02%)	15.144	15.179	(15.194)	(15.210)	(15.218)
Poisson's Ratio []	0.16(25%)	0.159	0.157	0.157	0.156	0.156
Shear Modulus [GPa]	179(3%)	174	169	167	166	165
Sound Velocity, longitudinal [km/s].	11.82(2%)	11.69	11.57	11.52	11.47	11.44
Sound Velocity, shear [km/s]	7.52(2%)	7.45	7.38	7.35	7.32	7.31
Specific Heat [J/kg·K]	715(5%)	1086	1240	1282	1318	1336
Tensile Strength [MPa]	250(6%)	250	250	250	250	250
Thermal Conductivity [W/m·K]	114(8%)	55.1	35.7	31.3	27.8	26.3
Thermal Diffusivity [cm²/s]	0.50(12%)	0.16	0.092	0.079	0.068	0.064
Thermal Expansion from 0 °C [10 ⁻⁶ K ⁻¹]	1.1(10%)	4.4	5.0	5.2	5.4	5.5
Wear Coefficient(Log10)[],0.2 m/s,5 N	-4.0(5%)	-3.6	-3.6			
Weibull Modulus []	11(27%)	11	11	11	11	11

SiC: Electrical Properties

PROPERTY	3C-SiC	6H-SiC
Bandgap (eV) at 300 K	2.3	2.9
Maximum operating temperature (°C) 300	873	873
Melting point (°C)	Sublimes >1800	Sublimes >1800
Physical stability	Excellent	Excellent
Electron mobility (cm²/V-s)	1000	600
Hole mobility (cm²/V-s)	40	40
Breakdown field, E _b (10 ⁻⁶	V/cm) 4	4
Thermal conductivity, σ _T (W/cm-°C)	5	5
Sat. elect. drift velocity, v _{sat} (10 ⁷ cm/ s)	2.5	2.5
Dielectric constant, ϵ	9.7	9.7

Source: V. Shields, JPL (NASA)

Accelerometer Circuit Configuration

The above configuration makes the Wheatstone Bridge an open one. It allows each resistor element BC, CD, DE, and EA to be measured independently. When 2/3 is connected together, the bridge is closed. To be consistent, the power supply Vin_1 and Vin_2 should be connected at pin 7 and 2/3, respectively. The output Vo_1 and Vo_2 should be tapped at pin 6 and 1, respectively.

SILICON CARBIDE MEMS

TYPE 1 TYPE 2 TYPE 3 TYPE 3 TYPE 1 TYPE 2 TYPE 3 TYPE 3 TY	OBJECTIVE • UNDERSTAND STRESS DEVELOPMENT AND DETERMINE FUNDAMENTAL FAILURE MECHANISMS OF SILICON CARBIDE MEMS ACCELEROMETERS UNDER HIGH SHOCK AND HIGH TEMPERATURE LOADING TO ENABLE USE IN HARSH ENVIRONMENTS
PAST ACCOMPLISHMENTS	TECHNICAL MILESTONES
 FIRST GENERATION ACCELEROMETERS FABRICATED AND EVALUATED - DATA TO BE PUBLISHED 	 INITIAL FEASIBILITY STUDY IN SIC MEMS 2Q99 INITIAL DESIGN OF SIC MEMS
THREE TYPES OF DEVICES WERE DESIGNED AND FABRICATED TO ALLOW FOR ACCURATE DETERMINATION OF STRESSES	ACCELEROMETER 4Q99 INITIAL FABRICATION OF SIC MEMS 2Q00
 SECOND GENERATION DEVICES HAVE BEEN DESIGNED AND EVALUATED 	EVALUATION OF FIRST GENERATION DEVICES 3Q00
	OPR: DR.SCOTT ROBERSON, DSN 872-2006, X257 PA 00-395