

Automation of the Multi-Option Fuze for Artillery (MOFA) Post-launch Battery

Presented by

48th Annual NDIA Fuze Conference

Charlotte, NC

April 28, 2004

by

John C. Bostwick

Program Manager for Reserve Batteries

215-773-5428

Presentation Outline

- **Facility Highlights**
- Description
- **Equipment History**
- **Process Control and DFSS/6-Sigma Lean**
- **Material Identification and Handling**
- **Video Clips of Equipment**
- Summary

Power Sources Center

Horsham, Pennsylvania

Power Sources Center has all of the physical assets and facilities required to: design, develop, manufacture, test, and analyze lithium batteries.

Features:

- Single story, 52,000 ft² facility.
- 40,000 ft² available for manufacturing.
- 6,000 ft² of humidity controlled dryrooms (RH maintained at < 5%)
- Computer modeling and analysis capability.
- Extensive laser welding capacity.
- In-house machining and tool room.
- Multiple production lines.
- Specialized battery manufacturing and processing equipment.
- Quality Assurance ISO 9001:2000 Certified
- Extensive battery testing equipment and expertise.

Description

- The MOFA Post-launch Battery is a state-of-the-art reserve lithium oxyhalide power supply.
 - It utilizes a moderate rate formulation of the lithium / thionyl chloride.
 - It can be stored in the dormant state for in excess of 20 years and then be activated by the conditions of ballistic launch.
- Supplies post-launch power to the MOFA Fuze -- Army's next-generation, NATO standard all-purpose artillery fuze for bursting munitions.
 - Power needed for electro-mechanical operation during four fuze modes: Proximity, Time, Point Detonate, and Delay
- Automation needed to assemble large quantities of this small, hermetic vessel (current orders and future domestic/foreign forecasts include over 1 million units)

Equipment's History

- ATK initiated design, development and procurement of automated equipment 1999.
- Installation of equipment at Horsham, PA facility was completed in November 2001.
- Average monthly production is 25K units, with surge capacity to 35K units
- To date, the line has produced nearly 400K batteries
- The four major pieces of automated equipment are:
 - Battery Assembly Machine (BAM)
 - Closure/Terminal Plate Welder (automatic laser)
 - Reservoir Welder (semi-automatic laser)
 - Electrolyte Fill and Seal Machine
- We have since installed another semi-automated work-cell in 2003 for inspection as part of our DFSS/Lean Six Sigma Initiatives

Process Control and DFSS/Lean 6 Sigma

- In-process/statistical process control (SPC) data collection capability:
 - The equipment automatically monitors 14 parameters and will shut itself down if parts become out-of-tolerance
 - The program team performs weekly data review of key characteristics to review data trends and proactively respond to conditions prior to defect creation
- All equipment yields are greater than 98% with over 90% availability
- DFSS/Lean 6-sigma philosophy and tools have become instrumental to the facility to develop a culture of Continuous Improvement
 - 100% percent of manufacturing/quality engineers trained as greenbelts
 - 2 engineers are currently in training for black-belt certification
 - 7 projects completed and/or underway...significant improvements seen in quality, cost, and lower risk for battery

ATK Ordnance and Ground Systems, LLC Power Sources Center

Example: Results from Poka-Yoke

Automation of MOFA Battery_ 4_28_2004.ppt

- Integrated ballheight and voltage & resistance inspection
- Eliminated risk of escapes
- Improved throughput by 20%
- Reduced labor costs by 35%

1999	2001	2003	2004
Hand assembly	Automated assembly	 DFSS/Lean Six Sigma initiated 	• DFSS/Lean Six Sigma throughout the organization
Limited rate	Greatly Increased throughput 10x	 Increased throughput 1.5x 	 Increased throughput capabilities
Operator dependent	 Operator dependency reduced Machine uptime focus 	 Poka Yoke Machine Uptime > 90% and increasing. Reduced defects Reduced cycle time from value stream mapping 	 Machine uptime >95% TPM incorporated on all equipment Trend analysis prior to creating defects Kanban
 Supplier variation in parts 	 Supplier variation in parts 	 Reduced part variance. 	 Reduced part cost, number of parts, and variance

Now:

Material Identification and Handling

- Pin-stamping required for lot identification purposes
- Date-coding added to record material pedigree information
- Auto-laser has Telesis PINSTAMP Dot Peen Marking System
- Started implementation of Lean Manufacturing using value stream mapping and Kanban to reduce cycle time and WIP

Next Step:

- 2-D code direct part marking (DPM) and reading capability. Improves quality and satisfies DoD's new UID initiatives
- Complete implementation of Kanban

Battery Assembly Machine (BAM)

- 8 dies to punch anode, cathode, and separator.
- 5 robots to assemble stacks.
- Rate = 800 batteries per shift.
- Automated SPC on 14 characteristics

Auto-Welder

- 1 robot
- 4 position index table
- •Terminal plate to case
 - 240/hour
- End plate to case
 - 240/hour
 - Lot marking
 - Date marking

- Fill Machine
- Fill and seal battery
- 1 robot
- 8 position index
- table
- 800 per shift
- Automated SPC on fill weight.

Automation of MOFA Battery_ 4_28_2004.ppt

Summary

- LESSONS LEARNED: Automated equipment by itself did not achieve the results we wanted. It took a team focused on DFSS/Lean Six Sigma at the Enterprise level using automation as another tool for continuous improvement
- We have the proven capability to manufacture high volume battery programs through the use of automated equipment.
- Power Sources Center has embraced DFSS/Lean Six Sigma concepts throughout our facility to make improvements in quality, cost, and reduced risk.
- We are a leader in the design, production, test, and analysis of lithium batteries.
- We appreciate the sponsorship and technical contributions of the U.S. Army ARDEC and US. Army Research Laboratory

