Embedded Instrumentation Technologies for Munitions

David H. Lyon
Chief, Advanced Munitions Concepts Branch
Weapons and Materials Research Directorate
Army Research Laboratory
Embedded Instrumentation
“The Way it Was, Is Now, and Shall Be”

• Used to be - On-board instrumentation was a “nice to have” but seldom made the cut
 ➢ Devices were obtrusive and difficult to integrate
 ▪ Power hungry, heavy, bulky, expensive, limited capability
 ➢ Solutions often required swapping payload for TM

• Then - A combination of developments
 ➢ Microelectronics industry blossomed
 ▪ PCs, Cell phones, GPS receivers
 ➢ MEMS sensors proliferated into the commercial market

• By the Way - Data requirements for smart munitions increased dramatically

• Now – A proven suite of technologies exists for truly embedded instrumentation & telemetry solutions
 ➢ Complete KE tracer well systems
 ➢ Extreme capability on-board recorders
Why Munition-Specific Developments?

- The Army and OSD identified T&E gaps and created programs to address them
 - Hardened Subminiature Telemetry and Sensor System (HSTSS) Program, tri-service
 - Army Research Laboratory commitment
 - Central Test & Evaluation Investment Program (CTEIP) related efforts
- T&E applications logically transform into embedded solutions (tactical)
Hardened Subminiature Telemetry and Sensor Systems (HSTSS)

Goal: Develop advanced instrumentation and packaging for the T&E of high-g, gun-launched smart munitions

Approach: Utilize COTS technology, leverage DARPA investments, use ARL as technical lead and systems integrator

Pacing Technologies:
• Design and procurement of die level comp.
• Advanced packaging technologies - MCM, Chip Stacking, Flip Chip
• MEMS based sensors

DoD/Warfighter Payoffs:
• Lower-cost and lower-risk development cycle for smart munitions
• Embedded diagnostics in every round for seamless transition from R&D, to Production, to Life Cycle monitoring
Components
(Reference Oscillator)

Statek Crystal Reference Oscillator Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Output Frequency</td>
<td>20MHz</td>
</tr>
<tr>
<td>Frequency Stability</td>
<td>+/- 20ppm</td>
</tr>
<tr>
<td>Output</td>
<td>Square Wave</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>3.0V (+/ - 5%)</td>
</tr>
<tr>
<td>Max Physical Size</td>
<td>350 x 300 x 150 mils</td>
</tr>
<tr>
<td>Operational Temperature Range</td>
<td>-40 to +85degC</td>
</tr>
<tr>
<td>Shock Ranges</td>
<td>500G, 30Kg, 100Kg</td>
</tr>
<tr>
<td>Acceleration Sensitivity</td>
<td>0.4Hz/G</td>
</tr>
<tr>
<td>Phase Noise</td>
<td>-140dBC/Hz max at 100kHz</td>
</tr>
<tr>
<td>Jitter</td>
<td>250ps max</td>
</tr>
<tr>
<td>Rise/Fall Time</td>
<td>8ns max</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>40% - 60%</td>
</tr>
<tr>
<td>Current Draw</td>
<td>5mA max</td>
</tr>
<tr>
<td>StartUp Time</td>
<td>10ms max</td>
</tr>
</tbody>
</table>

Crystal Resonator Mounted Inside Oscillator Package

Statek Oscillator #328 - Shock Test #1

- Shock Level: 31,302 G's
- Frequency (Hz) Relative to 20,000XXX MHz
- Time (ms)
Components
(Transmitters)
 Modules (Data Acquisition)

- CPLD based Pulse Code Modulation encoders (ARL)
- FPGA and PIC based PCM encoders (NAWC)

4 Channel/8 Bit
- 500 Kbps
- SR = 8.93KHz/ch
- 30 mA @ 5 V

16 Channel/12 Bit
- Up to 5 Mbps
- SR = 37.9 KSPS/ch
- 65 mA @ 5 V

8 Channel/8 Bit
- 240 Kbps
- 1 ch sampled @ 10 KHz
- 7 ch sampled @ 2 KHz

Pete Muller (ARL) and Gary Borgen (NAWC)
Technology
(Advanced High-g Packaging)

- Develop & qualify microelectronic assembly techniques for ballistic environments
 - Adopt & modify commercial techniques
 - Examine substrate materials, adhesives, interconnects, etc.

Nate Hundley, Pete Muller and Ed Bukowski
Applications and Integrations
So What?
• **Problem:** Ground-based instrumentation (i.e. radars, photos, and pressure gages) have limited capabilities.

DFuze – Projectile-borne, non-intrusive Instrumentation System

Artillery Nose Fuse Replacement

Portable Data Acquisition System

• Post-Flight processing
 ➜ Quick Look - 6 minutes

• **Solution:** Verifies flight performance, provides on-board diagnostics, validates aerodynamics, used as a ground truth measurement.

(*Patent US 6,349,652*)
DFuze Sensor Suite – 1.4” Dia.

- 36 mm printed circuit board
- 9 measurement channels
- Uses low-cost parts
- High-G survivable

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>ABBREV.</th>
<th>PART</th>
<th>MAKER</th>
<th>SELECTABLE RANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-axis Axial Acceleration</td>
<td>Acc I</td>
<td>SD1210</td>
<td>SDI</td>
<td>+/-5, 10, 25, 50, 100, 200, 10k* g's</td>
</tr>
<tr>
<td>2-axis Radial Acceleration</td>
<td>Acc J, K</td>
<td>ADXL278</td>
<td>ADI</td>
<td>+/-35, 70 g's</td>
</tr>
<tr>
<td>3-axis Magnetic Field</td>
<td>Mag I, J</td>
<td>HMC1023</td>
<td>Honeywell</td>
<td>+/-6 Gauss</td>
</tr>
<tr>
<td>Accel Ring Spin Rate</td>
<td>Spin</td>
<td>ADXL78 (4 ea.)</td>
<td>ADI</td>
<td>+/-35, 70, 120, 250 g's (0 - 70 Hz)</td>
</tr>
<tr>
<td>Solar Field Optical Sensors</td>
<td>Solar</td>
<td>SLIT (4 ea.)</td>
<td>ARL</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Temp</td>
<td>AD22100</td>
<td>ADI</td>
<td>-50 to 150 degree C</td>
</tr>
<tr>
<td>Temperature can replace one channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DFuze-Related Products

- Various form factors, shapes, and sizes
- Instrumented Army & Navy munitions and NASA sounding rockets

NATO-compatible fuze replacements

155-mm Army XM982 Excalibur
5-inch Navy CMCO
5-inch Navy EX171 ERGM
155-mm-inch Navy AGS
5-inch Navy ANSR

40-mm DARPA SCORPION

5” Navy BARRAGE

120-mm Army TERM-KE

14-inch NASA T-Lynx Sounding Rocket
Mortar Fuze Application

Brad Davis (ARL) and Ken McMullen (ATC)
Tank Cartridge Demonstration
M831 HEAT (120mm Tank)

Provides In-bore and Free Flight Telemetry Capability

3 Channel In-Bore Data Acquisition System using Multi-Chip Module Technology

In-Bore Axial Acceleration
Truly Harsh Environment
Applications

• 120mm KE Tracer Well (Spin Sensor)

• EM Gun Projectile (In-Bore Accel.)
SCORPION 40mm Guided Grenade

- 40mm Grenade utilizing Micro Adaptive Flow Control to provide maneuver
 - Capture 8 channels sensor data to characterize flight behavior
 - Integrated sensors, PCM encoder, transmitter, antenna and battery
 - Acquired data using ground station
Ogive Diagnostic System for Course Correcting Fuze

- Provides independent “ground truth” measurements of flight dynamics and transmits CCF function data
On-Board Recorder (Excalibur, 105mm and 120mm)

- Capture of high fidelity data critical to understanding in-bore and in-flight phenomena
- 32 channels, 4M samples each, up to 100khz sample rate, fully programmable, USB interface and GUI
- Integrated into SRV projectile
How Do They Do It?
Summary

• Technology gaps were identified and addressed by concerted efforts
• Technologies now exist to overcome the toughest of instrumentation and telemetry problems for munitions
• Solutions proven in a variety of applications
• Enable munition developers to achieve TRL goals on time

Bottom Line
There are no longer any excuses for missing test data
“Go Embedded From the Start”