Applying Autonomic Logistics to the F-35

6 March 2003
Luke J. Gill
F-35 Program

F-35A CTOL
F-35B STOVL
F-35C CV
The right mix to be effective and affordable
This Program is Different …

…VERY Different

Different in Everything We Do

- **Transformational Weapon System**
 - Multi-role Combat Aircraft Infrastructure Replacement
 - Coalition Operations Enabler

- **Innovative, Integrated Management Concepts**
 - Best Athlete, Best Practices, Best Value
 - Integrated Management Framework

- **Affordability Based Paradigm(s)**
 - Economies of Commonality and Scale
 - Global Best Value Supply Chain Management
 - Autonomic Logistics

- **True International Partnerships**
 - Allied Co-Development and Long Term Relationships
Breaking Rice Bowls

Specific Performance Requirements

- Mach 2.3
- 18°/sec turns
- Range
- Acceleration
- Surfaces
- Weight
- Training
- Skill Codes
- Support Equipment
- Trade Spaces for Cost Savings
- Title 10
- MIL SPEC
- MIL STD
- Repair Technologies
- Joint Tech Data
- Legacy Systems

JSF Paradigm

- Safety
- Data
- Title 10
- Training
- Information Systems
- Supply Support
- Maintenance Planning
- Configuration Management

Trade Space

Three AL KPPs:
- Mission Reliability
- Logistics Footprint
- Sortie Generation Rate

KPPs & Boundaries Open Up Trade Space

Approved for public release
The Autonomic Logistics Concept

- Smart, Reliable Aircraft
- Agile Support
- Integrated Electronic Training of Pilots and Maintainers
- ALIS-Integrated Infrastructure
- Partnering with Government and Industry for Best Value

A global evolution of our role in fighter sustainment
Why Autonomic Logistics?

- The Affordability Challenge
 - DoD has to reduce O&S costs

- AL Performance Requirements
 - Logistics Footprint
 - Sortie Generation Rate
 - Mission Reliability

Three of Eight KPPs are in AL
An Affordable, Integrated Solution

Affordability Baseline Cost

<table>
<thead>
<tr>
<th>Legacy</th>
<th>Air Vehicle</th>
<th>Autonomic Logistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on Legacy</td>
<td>Savings</td>
<td>Savings</td>
</tr>
<tr>
<td>F-16 AV-8B F-18</td>
<td>AV Design</td>
<td>AL Design</td>
</tr>
<tr>
<td>R&M PHM SLO</td>
<td>ISP Training</td>
<td>Business Approach</td>
</tr>
</tbody>
</table>

- Prognostics and Health Management (PHM) is part of the affordable solution
- Training and Information Systems are also Logistics Elements

O&S Savings Sources

- R&M
- SLO
- ISP
- PHM
- Training
Highly Supportable Aircraft
- Reliable Design
- Prognostics and Health Management
- Repair/Return (R/R) Maintenance

Training System
- Pilot Embedded Training
- On Demand Maintenance Training
- Air Vehicle Software Reuse
- Integrated Training

Support System
- Maintenance Support
- Supply Chain Management
- Support Equipment
- Joint-Service Tech Data
- Sustaining Engineering
- Intelligent Help Desk

Autonomic Logistics Information System
- Distributed Information System
- Elements include
 - Support Services
 - Training Services
 - Mission Support Services

Autonomic logistics provides order of magnitude O&S savings
The “Intelligent” Air Vehicle

PHM
- Enables opportunistic and on-condition maintenance
- Eliminates troubleshooting
- Dramatically reduces CND/A799s
- Significantly reduces support equipment
- Reduces training required
- “Triggers” the Autonomic Logistics System

RM&S
- Reduces spares
- Reduces support equipment
- Reduces manpower requirements
- Allows skill level reductions
- Reduces training requirements

Design Interface – The First Step to O&S Affordability
On-Board PHM CONOPS

Remote Diagnosis
Prognosis
Design Feedback

Lethality/Survivability
• In-flight Health,
Situation
Awareness

Sortie Generation
• Autonomic
Logistics
Enabled

Affordability/Supportability
• Near Zero False Alarms
• On-Condition Maintenance

ALIS
Off-Board PHM CONOPS

Aircraft Support
- Maintainer Vehicle Interface
- Augment Aircraft Diagnostics
- Component Performance Tracking
- Support PHM Maturation
- Clear Faults
- Execute Test
- Display Repair Task List
- Execute Diagnostic System Control
- Upload Algorithm Updates

Fleet Support
- Intelligent Help Desk
- Distribute PHM Information
- Support Knowledge Discovery
- Support PHM Maturation

- Downlink Health Data
- Assess and Report Aircraft Health
- Uplink Combat Turn Requirements

Supplier
Contractor
Portable Maintenance Aid
Maintenance Interface Panel
PHM Architecture

Air Vehicle On-Board Health Assessment

Integrated Caution, Warning, and Advisory System

PHM Area Managers
- Vehicle Systems
- Flight Control Systems
- Utility Subsystems
- Structures
- Mission Systems and Subsystems

Propulsion

Provides:
- AV-Level Info Management
- Intelligent Fault Isolation
- Prognostics/Trends
- Auto. Logistics Enabling/Interface

Health Management, Reporting & Recording

Non-volatile Crash Recorder

Methods Used:
- Sensor Fusion
- Model-Based Reasoning
- Tailored Algorithms
- Systems Specific Logic / Rules
- Feature Extraction

Results In:
- Decision Support
- Troubleshooting and Repair
- Condition-Based Maintenance
- Efficient Logistics

Autonomic Logistics & Off-Board PHM

Integrated Caution, Warning, and Advisory System

Displays & Controls

Portable Maintenance Device

Maintenance Interface Panel

Portable Maintenance Aid

ALIS

Portable Maintenance Aid

Maintenance Interface Panel

ALIS

Lockheed Martin Aeronautics Company

030306 13

NDIA
Advanced Techniques Are Applied to JSF Weapon System PHM Solution

Performance Monitoring / Trending:
PTMS (IPP, Filters, Reservoirs, Coalescer, etc.)
Hydraulic System (Pumps, Filter, Reservoirs, Accumulators)
Fuel System (Pumps, Valves, Heat Exchanger)
Weapon Bay Door Drive (Pump Speed & Swashplate Angle)
Rotary Actuators, EHAs
Weapon Racks
OBIGGS Filter

Auto Calibration / Gain Trending:
Radar
Displays
Fuel Probes
Stick & Throttle

Enhanced Sensor Technologies:
Engine - FOD Detection, Oil Debris,
Oil Condition, Blade Tip Monitoring,
Vibration Monitoring
SDLF - FOD Detection, Oil Debris,
Oil Condition, Shaft Alignment / Torque,
Clutch Wear / Vibration
Brake Temperature
Landing Gear (Strut Servicing, ‘Smart Tire’)

Operational Loads/Usage Monitoring:
Structures, Landing / Arresting Gear
Gun, EPS Starter/Generator
CSMU (Write Cycles)

Cross-Comparison (Redundancy Management):
Flight Controls (VMC, Inceptors, EHAs, Sensors)
EPS (Degraded modes, Emergency Power)
Fuel Probes

Capacity Trending:
28 & 270 volt Batteries
Cryo Cooling Capacity
ESA (loss of Elements)
OBIGGS / OBOGS
HIPPAG Recharge Rate

Information Management:
Model-Based Reasoning, Trending,
Pattern Recognition (Enhanced Diagnostics, Fault Isolation)

Automated Testing:
WBDD Actuator Backlash
External Fuel Tanks
RIOs, VSP Software
Nose Wheel Steering Friction Collar
CSMU (Periodic Read/Write Testing)
Aircraft Wiring

Off-Board Technologies:
Diagnostic Tools
Intelligent Help
Prognosis Models

PHM Is an Integral Part of Every Facet and Subsystem of the Weapon System

Lockheed Martin Aeronautics Company
Benefits of PHM

Change of Maintenance Philosophy

- On-condition
- Opportunistic
- Not “on-failure” nor “per schedule”
- Less interruption of mission schedule

Benefits to the Maintainer

- Unprecedented insight into vehicle/squadron/fleet health
- Less time spent on inspections
- Better ability to plan maintenance
- Simplified training
- Improved fault detection

Reduction in Test Equipment

- Less intermediate and flight line TE
- 35% less peculiar support equipment during SDD
- Eliminated O-level TE:
 - 81 CTOL pieces
 - 77 STOVL pieces
 - 61 CV pieces

PHM Cost Savings

82% Reduction in CNDs

- F-16C: Legacy 63, JSF 11
- AV8B: Legacy 77, JSF 13
- STOVL: Legacy 83, JSF 17

18% Reduction in Maintenance Man-Hours Due to Reduction in CNDs
ALIS Provides Off-Board PHM Support

ALIS Architecture

Interoperable With DoD/MoD External Systems
- Command & Control
- Maintenance
- Mission Planning
- Supply Support
- Training
- Transportation

Training Services
Support Services
Mission Planning Services

Status/Decision Support
Generate Maintenance Actions
Locate/Issue Parts
Training
Joint Tech Data
Analyze Health of Fleet

Air System Interfaces
- Air Vehicle
- Training Devices

Autonomic Logistics Information System Concept
- Interoperable
- Affordable
- Effective
- Proven Processes
- Rationale Justifies Concept
- Achievable Software Development
- Open Architecture
- Meets Requirements

LM JSF Commercial Virtual Enterprise Infrastructure
- Product Data Mgmt
- Integrated Mgmt Framework
- Procurement

JV03-332
Supportive Business Processes

- Joint Depot Maintenance Core Capability Requirements Determination and Quantification Procedure
- Joint Depot Source of Repair Determination
- Partnering with Depots
- “Power-by-the-Hour” Performance-based Logistics Contracting
- Supply Chain Management
Lift Fan Shaft Alignment Demo

- Health assessment of engine and lift fan
- Non-contact sensors
- Measured 50 out of 50 within required accuracy (+/-0.2 degree)
Beacon-Based Exception Analysis for Maintenance (BEAM)

- BEAM Technology developed and demonstrated at Jet Propulsion Laboratories (JPL), applied to JSF
- Provides failure detection and isolation
- Fusion of complex inputs - combines
 - Advances in wavelet theory
 - Non-linear information filtering
 - Neuro-fuzzy systems identification
 - Stochastic modeling
Rotational Machinery Prognostics

- Combines vibration analysis techniques with data fusion
- Detects and assesses equipment damage
- Predicts remaining component life
- Demo showed that impending lift fan failure can reliably be detected in time to avert catastrophe
Model Based Reasoning

- Prognostics Not Diagnostics
- Redundancy management
- Demonstrated on
 - Engine
 - Radar
 - Fuel system

- Fusion of diagnostic information using intelligent system techniques
 - Fault and degradation detection
 - Fault confirmation
 - Enhanced isolation
 - Cross-system correlation
 - Evaluation of AV functional capabilities