Process of Transferring New Energetic Materials from Concept to Production at Holston Army Ammunition Plant

Melissa Hobbs*
Jerry Hammonds
Curtis Teague
Ronnie Pickering
HSAAP TRANSITION TO PRODUCTION TIME LINE

Production Scale

<table>
<thead>
<tr>
<th>Year</th>
<th>Premixes</th>
<th>FEM RDX</th>
<th>DMDNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>CXM-10</td>
<td>PAX-2A</td>
<td>DMDNB</td>
</tr>
<tr>
<td>1999</td>
<td>PBXW-17</td>
<td>PAX-21</td>
<td>DNAN</td>
</tr>
<tr>
<td>2000</td>
<td>PAX-2A</td>
<td>PBXW-17</td>
<td>NTO</td>
</tr>
<tr>
<td>2001</td>
<td>Premixes</td>
<td>FEM RDX</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab Development

<table>
<thead>
<tr>
<th>Year</th>
<th>Premixes</th>
<th>FEM RDX</th>
<th>DMDNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>CXM-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>DMDNB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>PAX-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Premixes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Product Development

Quality Management Processes
- ISO 9001 2000
- Life Cycle Management
- Six Sigma

Process / Product Improvement
Evaluation
Full-Scale Production
Scale-Up Activities
Lab Scale Development
Technical Review
Management Review
Conceptual Process or Product
Featured Products

- PAX-21
- FEM RDX
- DNAN
- HMX & RDX Premixes
- PBXW-17
- DMDNB
- PAX 2A
- NTO
PAX - 21

- Comp-B Replacement IM Castable
 - 60mm Mortar (D&Z Kansas)
 - Others under evaluation

- Development ➔ Production: 10 Months
 - Utilized Existing Equipment and Process Knowledge
Concept ➔ Production: 8 Months

Mill Specifications:
- Capacity (50 – 500 LB / hour)
- Target product particle size (3-20 micron)

Programs:
- PAX-21
- PAX-194
- JAASM
- Gun and rocket propellants
- Commercial automobile air bags
DNAN

- Key Ingredient in PAX-21
- Material Problems
 - Sole source from China
 - Material does not meet purity specification
- 2 Stage Program:
 - 1.0 DNAN Purification Method ➔ 4 Months
 - 2.0 DNAN Synthesis ➔ Ongoing Program
HMX & RDX Premixes

- Concept ➔ Production: 6 Months
- “CXM Type” Products for Cast Cure Mixes
- Benefits
 - Improved safety at LAP plant
 - Reduced processing costs at LAP plant (no drying)
- Typical Coatings
 - IDP; HTPB; DOA
- Certified Viscosity of premix for PBX manufacture
 - Reduces risk at LAP plant
PBXW-17 (aka PBXN-11)

- Concept ➔ Production: 4 Months
- IM Pressed Explosive
- Traditional HSAAP Manufacturing Technology
- Programs
 - APOBS (Ensign Bickford A&D)
 - Mongoose (BAE SYSTEMS)
DMDNB

- Development ➔ Production: 16 Months
- Chemical Taggant for Plastic Explosives
- Was Produced Solely by Dow Chemical
 - Facility shut down Q4 / 2002
- Identified by the Army as a Critical Material
- Now Produced at HSAAP
PAX-2A

- Concept ➔ Production: 18 Months
- Polymer Coated HMX Explosive
- Leading IM Replacement for Comp A-5
- Traditional HSAAP Manufacturing Technology

10x Magnification
NTO

- Concept ➔ Production: Production Scale-up
 Ongoing
- IM RDX Replacement
- Novel Method for Triazolone Synthesis
 - Highly suitable for Agile Facility
- Currently Undergoing Evaluation by U.S. Air Force
- Synthesis & Recrystallization Work Being Sponsored by Eglin AFB
TO & NTO Crystals

TO (200x Magnification)

NTO (60x Magnification)
Challenges

- Resource Sharing Across Programs
- Rapid Learning Curve
- “Comfort Factor” of Introducing New Technologies / Processes
- Waste Stream Management i.e. Ammonium Perchlorate (AP), Nitroaromatics
Summary

- Proven Synthesis, Scale-Up and Production Methods
- Average Time Scale = 9 Months
- ISO 9001-2000 Certified Manufacturer