Development of an Ultrasonic Inspection System for the 120MM Case Base

Presented At

The National Defense Industrial Association
38th Annual Gun, Ammunition, and Missiles Symposium & Exhibition
25 March 2003

Art Skeates III
Alliant Techsystems
120mm M831A1 Cartridge Lead Engineer
M831A1 CARTRIDGE, 12944397

- CONTAINER, PROPELLANT
 - 12953553
- PROPELLANT, M14
 - 12956320
- RING, RETAINING
 - MS16624-3177
- SPRING, DISC
 - 12526678
- CASING, CARTRIDGE
 - 12944287
- CASE BASE AND SEAL ASSY
 - 12524833
- PACKING PREFORMED O-RING
 - MS9068-121
- ELECTRIC PRIMER
 - 12525143
- PROJECTILE HEAD
 - 12944394
- SEAL
 - 12944394
- RING
 - 12526248
- CAP CASE
 - 12526280
- STABILIZER
 - 12526954
- DISC
 - 12944392
- CUP AND TRACER ASSY
 - 12944424
- CLOSURE SCREW ASSY
 - 12524920

Public Release of this document is only authorized for this NDIA Presentation
Case Base

Manuf

- Forged from High Quality, High Strength Steel
- Heat Treated
- CNC Machined
- Dimensional Inspection
- **NDT Inspection (Critical II Characteristic)**
- Protective Finish / Inspected
- Injection Mold Rubber Seal Assembly
- Final Inspection
- Ship to LAP Facility
Case Base Perf
Requirements

- Requirements
 - Fit Gun Chamber
 - Obturation
 - Provide seal for pressures in excess of 100,000 PSI
 - Failure results in injury or death of Tank Crew
 - Soundness
 - No splits or cracks after firing
 - Extract from Gun After Firing
NDT History & Concerns

- **Steel Fabrication**
 - Forging and Heat Treat Processes can Potentially Induce Unacceptable Flaws

- **Magnetic Particle Inspection (MT)**
 - 100% TDP Requirement from onset of Program

- **Magnetic Particle Concerns**
 - Operator Dependent
 - Reliability, Visual, Fatigue, Certification
 - Numerous parameters to control and verify
 - Magnetism, Particle Concentration, Contamination, Black Light Intensity, White Light Intensity, Carrier Fluorescence
NDT History & Concerns (Continued)

- **Current Tank Ammo Contract**
 - Revised the NDT Requirements
 - 200% MT Required When Critical Flaw Rate > 1 in 40,000
 - Ultrasonic Inspection Required When The Critical Flaw Rate > 1 in 16,000
- ATK Decides to Procure An Automated UT Inspection System For Use As Its Primary Case Base NDT Inspection System
Primary Technical Challenge
- The Case Base Cross Section

- 1st Tank Ammo Production UT of Non-Uniform Cross Section
- 1st Tank Ammo Production UT of a Finish Machined Part
Key Decision
- ATK’s Supplemental Standards

- ATK Designed and Implemented the Use of Additional EDM Notch Standards to Maximize the Systems Inspection Coverage Area
 - Also Maximized the Reliability of Flaw Detection

- Typical Gov’t TDP & ATK Standards Notch Sizes

<table>
<thead>
<tr>
<th>Depth (mm)</th>
<th>Lengths (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>6.1, 8.64, 12.49</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Longitudinal EDM Notch Standards

Government TDP Required

9280443-G1

ATK Supplement

9280443-G2
Circumferential EDM Notch Standards

Government TDP Required ATK Supplement
Automated UT System Development

- Selected a Supplier to Develop and Manufacture an Acceptable System
- Extensive support and coordination with supplier
- Two Weeks After Witnessing a Pre-ship Validation, Supplier Went into Voluntary Insolvency
 - Pre-ship Validation Identified Some Minor Issues but Performed Well, System Appeared to be 95+% Complete
- ATK Took Possession of the System and Proceeded on Its Own to Complete the Systems’ Development and Qualification
ATK Engineering and UT Expertise at Work

- **Time of Discovery**
 - Installed System in Factory, Discovered that Despite the Apparently Successful Pre-ship Validation, the System has Some Shortcomings that Require Significant Design Changes

- **Major Redesign of the Part Rotation System**
 - Consistent Rotation Speed Vital
 - Upgraded from 1 Drive Roller to 4 Drive Rollers
 - Optimized Roller Material and Configuration
 - Upgraded Base Plate Design to Reduce Rotational Friction

- **Redesign Resulted in Significant Improvement in the UT Inspection Performance**
ATK Engineering and UT Expertise at Work

- ATK’s Engineering Challenge
 - Numerous Additional Issues Discovered
 - Motion Control Code Errors
 - LabVIEW Data Acquisition Code Errors
 - Counter/Timer Circuit Fails (provides trigger pulse for UT instrument)
 - Inspection Coverage Area and Ultrasonic Transducers Inadequate
Case Base in Drive System
Redesigned Base Plate
Revised the Majority of the Ultrasonics
- Transducer Type, Location, and Orientation
- Redesigned the Transducer Scanning Heads and the Fixed Transducer Locating Brackets
- Revised and Optimized the Transducer Inspection Parameters
- Used ATK Designed EDM Notch “Coverage Standards” to Insure Proper System Performance
ATK Engineering and UT Expertise at Work
(continued)

- Replaced Light Duty Vertical and Horizontal Motion Tables with Heavier Duty Versions
- Upgraded and Revised the Motion Control Software to Eliminate Errors
- Upgraded Rotational Motor to Increase Available Torque Output
System As-Received
System Af Upgrade
ATK Pre-Validation

- ATK Performed a 27 Consecutive Hour Pre-Validation Test Run
 - 2 Gov’t & 2 ATK Standards Each Inspected 234 Times (7,488 Notches Detected at 100% Reliability)
 - 2 “Good Parts” Each Inspected 234 Times
 - < 1% False Rejects
 - Demonstrates High Reliability for “Critical Characteristic”
ATK Performs a 51 Consecutive Hour Government Witnessed System Validation / Qualification

- System Qualified!!!
- 2 Gov’t TDP & 2 ATK Standards Each Inspected 462 Times (14,784 Notches Detected at 100% Reliability)
- 2 “Good Parts” Each Inspected 462 Times
 - 4 False Rejects, 0.43%
System Design Features

- Fail-Safe System Design
 - Any Problems/Issues System Defaults to Reject Status
- Fully Automatic, Semi-Automatic and Manual Operation Modes
- PC Keyboard & Mouse used to Set-Up & Control the System
 - Full Access for System Level Administrator
 - Limited Access for Production Operator
- Automatic Second Scan When Defects are Detected
- Detailed Data Files (Calibration Standards & Flaws)
- Robust Design and Ease of Operation / Maintenance
- Periodic System Verification Utilizing Standards
CALIBRATION REPORT

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>02/19/02 05:01:31 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Lot</td>
<td>Validation</td>
</tr>
<tr>
<td>Component Type</td>
<td>Base Case</td>
</tr>
<tr>
<td>Component Ref</td>
<td>9280442 G1</td>
</tr>
<tr>
<td>Scan File</td>
<td>Scan2001.PRG</td>
</tr>
<tr>
<td>UT File</td>
<td>Final_Internal.st3</td>
</tr>
<tr>
<td>Flaws Matched</td>
<td>33 of 33</td>
</tr>
<tr>
<td>Extra Flaws</td>
<td>0</td>
</tr>
<tr>
<td>Status</td>
<td>PASS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaw #</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>
System Design Features (Continued)

- Self Feed Input Chute & Accept Chute
- Locked Reject Chute (Limited Access to Rejected Parts)
- Automated In-line “U” Acceptance Stamping
- Temperature Controlled Electronics & Coupling Media
- Filtering in Both the Upper and Lower Tanks
- Per Channel Instantaneous and Latched Visual Alarms
- Permanent Storage of Inspection History
- Extensive Use of Non-Metallic Pads/Guides/Etc. to Prevent Parts Damage
UT Inspection Specifics

- Horizontal Scanning of the Case Base Aft Face
 - 5 Transducers, 6 Tests
- Vertical Scanning of the Case Base Sidewall
 - 4 Transducers, 5 Tests
- Fixed Transducers to Inspect Specific Locations
 - 5 Transducers, 1 Receiver, 5 Tests
- Inspection Cycle < 1 Minute/Part
System Main Screen
Ultraeonic Instrument
System Alerts

System Error

EMERGENCY STOP
Release 'Emergency Stop' and press 'Control On', then click OK.

System Logged Off

To operate this system choose Log On.
To close the software choose Exit.
For both options, a valid password is required.

System Calibration Required

System Calibration Required.
Please place the calibration components in the inlet chute in this order:

9280442 G1
9280442 G2
9280443 G1
9280443 G2

Make sure no other components are in the inlet chute.
Click OK when ready.
Conclusion & Recognition

- ATK’s Determination and Resolve Has Resulted in a Significant Advancement in the State-of-the-Art NDT Inspection Method for the 120mm Case Base
- Special Thanks & Appreciation Go To:
 - Tom Rockne, Former ATK Tank Ammo Program Director
 - Gary Lamecker, ATK Level III for UT