27 MARCH 2003

ERIC HAWLEY

Contact Information
Ph: (301) 744-1822
Fax: (301) 744-4410
hawleyej@ih.navy.mil

INDIAN HEAD DIVISION
NAVAL SURFACE
WARFARE CENTER
INDIAN HEAD, MD
Helicopter Engine Compatibility Background

- **Problem description:**
 - AH-1F downed with fatalities in 1988 while firing MK 66 Rocket Motors
 - Army investigation concluded that the accident was caused by engine ingestion of high-temperature, oxygen-depleted rocket exhaust gasses
 - AH-1 physical mod implemented (air scoop)
AH-64 testing identifies rocket exhaust ingestion into engines still a problem

- Causes engine torque splits and torque fluctuations (surges)
- Physical mod to aircraft considered not practical
- Firing restrictions in effect
Helicopter Engine Compatibility Background

- High temperature oxygen depleted rocket exhaust caused by secondary combustion
- Secondary combustion (afterburning) occurs when CO and H₂ in the exhaust react with oxygen in atmosphere

Current MK 66 exhaust components

<table>
<thead>
<tr>
<th>Combustion Component</th>
<th>Exit Composition (mole fraction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>0.1898</td>
</tr>
<tr>
<td>CO</td>
<td>0.33007</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.18146</td>
</tr>
<tr>
<td>H₂</td>
<td>0.17295</td>
</tr>
<tr>
<td>N₂</td>
<td>0.12218</td>
</tr>
<tr>
<td>Pb</td>
<td>0.00177</td>
</tr>
<tr>
<td>Cu</td>
<td>0.00177</td>
</tr>
</tbody>
</table>
MK 66 Rocket Motor Background

MK 66 MOD 4 ROCKET MOTOR
Helicopter Engine Compatibility Approach

- Secondary combustion can be suppressed by introducing more potassium sulfate (K_2SO_4) into motor exhaust
 - Mod 0-4 Salt Rod addresses rocket exhaust ingestion issue in fixed wing aircraft
 - Helicopter ingestion situation is the same
 - Ingestion timeline is different
 - Existing salt rod consumed in 6 feet of motion
 - Helicopters need salt rod effect through rotor downwash
 - Army Aviation Engineering specifies 30 feet as necessary
• There is a linear relationship between salt volume and duration of afterburning suppression

• Amount and shape of salt rod modified to increase effectiveness for 30 feet

• Enlarged salt rod contains ~ 3x more K_2SO_4

MOD 4

- 0.5 INCH DIA X 6 INCH LONG SALT ROD
- 0.33 INCH DIA X 4 INCH LONG SALT ROD
- 0.5 INCH DIA X 15.3 INCH LONG SALT ROD
Exhaust Chemical Analysis

- **K₂SO₄ reactions**
 - **Afterburning reaction:**
 \[
 2\text{CO} + 3\text{H}_2 + 2\text{OH} + 2\text{O}_2 \Rightarrow 2\text{CO}_2 + 4\text{H}_2\text{O}
 \]
 Atmospheric oxygen
 - **Reaction with K₂SO₄:**
 \[
 \text{K}_2\text{SO}_4 + 2\text{CO} + 3\text{H}_2 + 2\text{OH} + 2\text{O}_2 \Rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O} + \text{H}_2\text{S} + \text{KO} + \text{K} + 2\text{O}_2
 \]
 - **K₂SO₄ provides oxygen to the exhaust, which delays the overall reaction of the exhaust fuels (H₂ and CO) with the atmospheric oxygen (O₂)**
Static Fire Test
Static Fire Test Results

- Motor exhaust temperature found to be more than 20% lower than current MK 66 motors at 77 F and 150 F
Ground Launch Results

- Suppressed flight distance >30 ft average
Ground Launch Results

- Ground launch thermal data

MK 66 MOD 3 ROCKET MOTOR (150 F)
HELICOPTER COMPATIBILITY ROCKET MOTOR (150 F)
Air launch test on an instrumented AH-64A with MK 66 motors w/ enlarged salt rod conducted in 1998

Test conditions
- 10 knot wind restrictions
- Altitude was 150 ft
- Air temperature was in upper 70s, 70-80% RH

Test pass/fail criteria:
- Torque split exceeds 15%,
- Main engine torque fluctuations of ±15%,
- Tail rotor torque fluctuations of ±500 ft-lbs
Air Launch Results

- All engine surge conditions eliminated except one
 - Hover: All surge conditions eliminated
 - 40 kts forward flight: All conditions but one eliminated

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>LEFT OUTBOARD</th>
<th>LEFT INBOARD</th>
<th>RIGHT INBOARD</th>
<th>RIGHT OUTBOARD</th>
<th>MK 66 MOD 3</th>
<th>HELICOPTER COMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROCKETS</td>
<td>ROCKETS</td>
<td>ROCKETS</td>
<td>ROCKETS</td>
<td>ROCKETS</td>
<td>ROCKETS</td>
</tr>
<tr>
<td></td>
<td>DENSITY</td>
<td>DENSITY</td>
<td>DENSITY</td>
<td>DENSITY</td>
<td>DENSITY</td>
<td>DENSITY</td>
</tr>
<tr>
<td>HOVER</td>
<td>10</td>
<td>2</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>19</td>
<td>8</td>
<td>8</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>40 KTAS</td>
<td>16</td>
<td>4</td>
<td>19</td>
<td>2/1</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>FORWARD</td>
<td>12</td>
<td>12</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>19</td>
<td>15</td>
<td>2</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2/1</td>
<td>2</td>
<td>2</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>12</td>
<td>15</td>
<td>2</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>
Air Launch Results (cont.)

- **Worst condition:** 40 kts forward flight, one or two rockets fired from left inboard launcher
- Enlarged salt rod causes ignition pressure spikes
 - Enlarged salt rod known to increase pressure, and therefore thrust during ~ 0.10 second of burn
 - Measured thrust values near MK 66 specification limit of 2100 lbf
Pressure Differential Test

- Thrust requirement derived from internal forward end measured pressures
- Aft end known to be weakest point on motor (lockwire joint)
- Efforts made to measure pressure at aft end
Pressure Differential Test

- Pressure differential test performed at Indian Head in June 2002
 - Previous analysis predicted a 350 - 500 psi drop at 150°F
 - Aft pressures measured ~400 psi lower than forward end during first 0.10 seconds at 150°F
• Thrust limit redefined based on aft end pressures
 – Recommended a new thrust limit of 2500 lbf for the first 0.10 seconds of burn
 • Maintains motor tube factor of safety of 1.5
 • Verified by analysis and historical data

![New Thrust Limit Graph]

Thrust Limit = 2500 lbf
Thrust Limit = 2100 lbf
Thrust Limit = 2350 lbf
Thrust Limit = 2900 lbf

0.1 s 0.5 s 0.7 s

MOD 4
Modified
Future Work

- Enlarged salt rod design will be incorporated into the MK 66 MOD 6
- Qualification of MOD 6 scheduled to begin in this spring
 - Qualification includes:
 - Environmental Tests
 - Ground Launch
 - Air Launch
- Due to enter production midway through FY04
Questions

Contact Information

ERIC HAWLEY

Ph: (301) 744-1822
Fax: (301) 744-4410
hawleyej@ih.navy.mil