NDIA FUZE CONFERENCE

Air Force Fuze Overview

9 April 2003

Ms. Wanda Siefke
Chief, Fuze Division
AAC/WMGS
wanda.siefke@eglin.af.mil
Purpose of Briefing

• Why Are We Here:
 – Provide Lessons Learned on Fuze Systems

• What Do I Want From You:
 – Understand Fuze Challenges and, That to Survive, We Must Change Our Mindset
Outline

Precision Guided Munitions/Fuzes

• Challenges From Last Conference
• Challenges Today
• Challenges Tomorrow

Change our mindset to meet challenges of tomorrow
Challenges from Last Conference

- Availability and Reliability
- Collateral Damage
- Effectiveness of Defeat Mechanisms
- Multiple Event Requirements
- High G Environments/High Velocity
- Weapon/Aircraft Compatibility
- Miniaturization
- Versatility

Budgets for PGMs increased, but no provision for increased fuze quantities
Challenges Today

- Technical Complexity
- Production Capacity
- Manufacturing Capability
- Unit Cost

Not Only Are Fuze Designs Complex,...

..... They Are Extremely Hard to Build
Joint Programmable Fuze (JPF)

POC: Roy Suarez
(850) 882-9514x2237
roy.suarez@eglin.af.mil

Contractor: Kaman Dayron

FMU-152A/B
JPF System Description

- Single Fuze Compatible With Mk82, Mk83, Mk 84, BLU-109, BLU-113 for Use in AGM-130, GBU-10/12/15/24/27/28 and All JDAMs

- Can Be Used in Current FMU-139 and FMU-143 Applications

- Cockpit Selectable Arm/Delay Times
 - Arm 2-25 Seconds
 - Delay Instantaneous to 24 Hours

- Multi-function Capability
 - Hard Target Penetrator Weapons
 - Blast Fragmentation
 - Backward Compatibility With Current Weapons

JPF Provides Key Flexibility the Warfighter Desperately Needs
Challenges

• Technical Complexity –
 – High Altitude Low Airspeed (HALA)
 • Low Power Output From FZU Due to Inadequate Airflow

– Changes
 • FZU-55A/B Initiator - Improve Power Output
 • FMU-152A/B Fuze - Modify Fuze Logic to Handle Low Power Conditions
HALA Redesign results

- JDAM/B-52 Tests Feb 03

Great Success: 5 Released, 5 Performed
Challenges….Industry-wide

• Manufacturing Capability
 – Technology Dated
 – Labor Intensive
 – Tight Tolerances
 – Changes
 – Modernize Manufacturing Operations
 – Lean Manufacturing Principles – Creates Capacity
 – Cellular Factory Layouts
 – Focused Product Teams Employ Taguchi and Six-Sigma Methods
 – Characterize and Validate Activities such as
 – Detail & Sub-Assembly Operations
 – Component & Assembly Test Sets
 – Outsourcing

Ownership, Accountability, Responsibility at Cell
Hard Target Smart Fuze (HTSF)

POC: Tanya Lambert
(850) 882-9514 x-2178
tanya.lambert@eglin.af.mil

CONTRACTOR: ATK (Alliant Tech Systems)

FMU-159A/B
HTSF Description

- Electronic, In-Line
 - Accelerometer-based fuze
 - Void sensing
 - Hard layer count
 - Depth of burial
 - Back-up Timer
- Compatible with existing fuze wells
- Cockpit Programmable with JDAM interface
- Potential weapon systems
 - GBU-24, -27, -28, -37, -31
 - GBU-15, AGM-130, AGM-142,
 - AGM-86/D, Tactical Tomahawk Penetrator Variant

Precise, lethal targeting
HTSF Challenges

• Technical Complexity
 – Knows Where It Is Within the Target – **Not Just a Timer Anymore**
 – Must Survive Target Environment

• Manufacturing Capability
 – Labor Intensive

• Production Capacity
 – Low Quantity Does Not Incentivize Investment

• Unit Cost
 – Low Quantity Can’t Yield Learning Savings
DSU-33 Proximity Sensor

POC: Bill Yourick
(850) 882-9514 x-2204
john.yourick@eglin.af.mil

CONTRACTOR: ATK (Alliant Tech Systems)
DSU-33 System Description

- Low Altitude RADAR Proximity Sensor
 - Height of Burst (HOB) 20 Feet (Nominal)
 - Over all Water and Land Surface Conditions

- Provides Air Burst Proximity Fuzing for JDAM, Mk-80 Series & M117 GP Bombs

- Provides Fire Pulse Signal to the FMU-139 and FMU-152 Fuze

- Self Powered: Initiated by FZU or FFCS
 - DSU-33A/B: 60-90 Sec - GP Bombs
 - DSU-33B/B: 200 Sec – JDAM

- Employment on A10, F15, F16, F22, B1, B2, B52, F/A18, AV8, and F14 Aircraft
DSU-33 Challenges

- Technical Complexity
 - Parts Obsolescence
 - Change
 - Qualify New Parts

- Unit Cost
 - Stable Funding and Competitive Procurement Provided Meaningful Cost Reduction Incentives

“Green” Program – It is Meeting Cost, Schedule & Technical Requirements
Outline

Precision Guided Munitions/Fuzes

- Challenges from Last Conference
- Challenges Today
- Challenges Tomorrow

Change our mindset to meet challenges of tomorrow
Challenges Tomorrow
(AKA: Observations from Air Armament Summit)

• Affordability
• BIA/BDA: Weapon Data Links
• Plug and Play Capability
• System Interoperability

Mission Flexibility is Key
Air Armament Summit Sound bites

• Capabilities Panel: HDBT
 – Challenge of Targets That Are Deeper and Harder
 – Mission Flexibility – Ability to Reprogram Fuzes From the Cockpit

• Integrated Armament Panel: HDBT
 – Precision, Accuracy
 – Mission Flexibility but “Boutique” Programs

• S&T Panel:
 – Hypersonic Cruise Missile – Penetrating Fuzes, High G Smart Fuzes
 – Directed Energy Weapons: Pacer – Power Sources
 – Deeper Targets: Influence Fuze in Facility Denial Munition

• “Smart Weapons Reduce Collateral Damage”

Future fuzes must be flexible and interoperable
Moving Toward the Future….
….A theoretical case study

- All Future Fuzes
 - Low Unit Cost
 - High Reliability/Long Shelf-life
 - Standard Fuze Interface
 - Reduced Size
 - No FZU Dependency
 - Standard Architecture
 - Multiple Sources
 - In-flight Programmability
 - Cruise Missile Application

Common Architecture and plug and play
Low Unit Cost

- Increased Integration/Reduced Parts Count
- Manufacturable Design
- BIT Capability
- High Production Quantities
 - Modular Design
 - Flexible Architecture
 - Standardized Fuze Interface

Meet multiple weapon and Fuze Needs with cost effective module replacement
High Reliability/Long Shelf-life

- Increased Integration/reduced Parts Count
- No Mechanical Moving Parts (All Electronic)
- Hermetically Sealed
- BIT for Nondestructive Surveillance and Field Verification
Fuze Modular Integration Evolution
Standard Fuze Interface

- Standardizing Interfaces Not Unique
 - 1760/1553 Communications Interface
 - FFCS
 - Microsoft Windows
- Simplifies Both Fuze and Weapon Design
- HTSF Example of Fuze Interface Flowed Into System Requirements (AGM-86/D&TTPV)
Reduced Size

- Smaller munitions require smaller fuzes
- 2” fuze well with 3” fuze well compatibility
No FZU Dependency

- MIL-STD-1316 Compliance (Weapon Power and/or FFCS)—AGM-86/D and TTPV are Early Steps
- No Altitude/Airspeed Restrictions
- No Weapon Flight Characteristic Sensitivities
- Reliable Function
Multifunction

- Unitary-Unguided, Direct Attack, Standoff
- Proximity Fuzing
- Multi-Event Control
- Agent defeat
- BDA
- Hypersonic
- Area Denial
Representative Schedule Could Be...

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Legend</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>JPF: FMU-152A/B</td>
<td>Funded</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>JDAM HALA</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Hi-Reliable Fuze (ESAD)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Restructure Fuze for Stored Energy</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>P3I Production</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>P3I Production</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>HTSF: FMU-159A/B</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>HSP Integration</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>P3I Production</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>P3I Production</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>DSU-33B/B</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>FAST ATD</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>P3I Production</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>P3I Production</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Agent Denial Fuze ATD</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Agent Defeat Weapon</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>FIBDI ATD</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>FIBDI SDD</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>HTIF ATD</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>HTIF SDD</td>
<td></td>
</tr>
</tbody>
</table>

Standard Fuze Architecture

- **Legend**: Funded - Green, Unfunded - Red
- **Other Symbols**: Blue arrows indicating sequence

Precision Strike SPO

Notes

- The schedule represents key fuze advancements over the years.
- Each task is marked for funding status (Funded or Unfunded).
- Blue arrows denote progression and dependencies.

Technical Summary

- The schedule highlights critical milestones and production phases.
- Key tasks include advancements in fuze architecture and production.

References

- [Technical Report on Precision Strike Fuze Development](#)
- [Fuze Architecture Whitepaper](#)
…. A Theoretical Case Summary

- Technology Exists for Standard Architecture
- More Economical for DOD
- More Profitable for Industry
- More Straight Forward for Safety
- Defined Interface for Weapons Primes

It Is Possible To Get More With Less
Recap

• Fuze Challenges Have Gone From No Funding for Increased Fuze Quantities To....

• Recognizing Challenges Of:
 – Technical Complexity
 – Manufacturing Capability
 – Production Capacity
 – Unit Cost
 And Must Go to...

• Future:
 – Affordability
 – BIA/BDA
 – Plug and Play
 – System Operability

Common Architecture and Plug and play
Purpose of Briefing

• Why Are We Here:
 – Provide Lessons Learned on Fuze Systems

• What Do I Want From You:
 – Understand Fuze Challenges and, That to Survive, We Must Change Our Mindset
Questions?