High Aspect Ratio Metal MEMS (LIGA) Technologies for Rugged, Low-Cost Firetrain and Control Components

John Rasmussen, William Bonivert, John Krafcik

NDIA 47th Annual Fuze Conference
April 10, 2003
Contents

LIGA: Enabling technology for miniaturized fuze components

• What is LIGA?
• Why LIGA?
• (Metal) MEMS S&A Development Program
• LIGA Foundry Capabilities
• Getting Started is Easy
AXSUN Technologies - Corporate Overview

Corporate Overview
- Founded in 1999
- Locations
 - Billerica, MA
 - Livermore, CA
- Employees -- > 100
- Company and management background
 - Telecommunications
 - LIGA precision mechanical components
 - Optical and electrical components
- VC funded

AXSUN Technologies develops, manufactures, and assembles a new class of miniaturized mechanical and optical devices that enable cost-saving, performance-enhancing opto-electronic and mechanical products for communications, defense, life sciences, and industrial applications.
LIGA Is…

- An acronym for the German words for **lithography**, **electroforming**, and **molding**
 - Electroforming is a process for creating 3-dimensional metal parts by using a carefully controlled long-duration electroplating process
- A technology for fabricating highly precise micro components from metals and plastics
- Being commercialized around the world
 - AXSUN is the commercial leader in the U.S.
LIGA - Biggest of the Small Devices

Precision Machining

Surface Dimension

LIGA

Silicon

Vertical Depth

100nm

1 um

50um

1mm

1 um 10 um 500 um 1 mm
LIGA Technology Starts With…

- Individual part designs from CAD files
- Layout and mask fabrication
- Lithography (similar to semiconductor fabrication process)
LIGA - Process Overview

- Photo Mask
- Photolithography
- Development
- Electroplating
- Resist Removal
Alternative Final Part Configurations

Final part options include:

• Leave metal structure itself, including base plate, intact to serve as final product,
 – Or use it as a mold insert for injection molding, hot embossing, or thermoforming high precision plastic parts, or

• The metal structure, including base plate, may be diced into 3-D parts, or

• Finished metal parts can be removed from the base plate (loose parts)
Why LIGA??

• Rugged, high precision metal parts
 – Withstand high pressures and temperatures
 – Transfer useful forces and torques
 – Resist chipping and stiction
• Finished components without micro machining
 – Superior feature definition and radius
 – Ultra-smooth sidewalls
• Readily assembled to create mechanisms
 – Conventional parts feeding; pick and place
• Attach by soldering, welding, brazing, or adhesives
• Superior mechanism performance - - longer mechanical life and reduced power demand
 – Enabled by greater precision, lack of burrs, and smoother, straighter sidewalls
AXSUN: founded to develop a new class of optical capabilities, an *Optical Micro Instrumentation Platform*

- The key feature: order of magnitude reduction in size of components needed to manipulate optical capabilities
- **A key enabling technology - LIGA**
- The **benefits** – Micro instrumentation modules that are
 - Lower cost
 - More precise
 - Easier to integrate with electronic systems
LIGA - - An Enabling Technology
In Telecom Use Today

• High precision metal structures for mounting and aligning micro optical devices

• Why LIGA?
 – Enables both active and passive device alignment
 – Deformable for precise multi-axis alignments to 0.1 micron
 – Rugged - - retains alignment over life of the product
 – Precise surfaces for easy, accurate mounting
 – Increasingly used in customer-proven, Telcordia qualified modules

Benefit - - improved competitiveness
 – Obtains maximum performance from every device, enabling
 • Maximum prices for high performance modules, or
 • Use of lower cost, lower performance devices for greater profits
 • Result - - higher performance at lower cost
Integrating mechanical, optical, and electronic functions

Processes
- Precision Pick & Place
- Micro-Joining
- Robotic Alignment
- Final Assembly

MICRO-OPTICAL TOOLBOX

PLASTIC DEFORMATION

BENCH

SUBSYSTEM

MODULE
LIGA – Making BETTER Small Parts

<table>
<thead>
<tr>
<th>If You Make</th>
<th>(Sample Uses)</th>
<th>Switching to LIGA could result in</th>
</tr>
</thead>
</table>
| • High frequency antenna arrays | Traveling Wave Tubes (TWTs for 80-180 GHZ communications | • Arrays with required 2 micron features
 • (EDM achieved only 20 micron features) |
| • Micro probes | Medical instruments: | Rugged, sterile, chip-free, burr-free metal devices with smooth surfaces and precise features
 • Catheters | Smaller devices than other fabrication methods |
| • Grippers | | |
| • Cutters | | |
| • Motors | | |
| • Micro-nozzle arrays | Biomedical and bio-analytical devices for: | Finer, more uniform droplet size for improved drug inhalation
 • Drug delivery | More precise dosage control |
| • Micro-fluidic delivery systems| | |

Switching to LIGA could result in:

- Arrays with required 2 micron features
- (EDM achieved only 20 micron features)
- Rugged, sterile, chip-free, burr-free metal devices with smooth surfaces and precise features
- Smaller devices than other fabrication methods
- Finer, more uniform droplet size for improved drug inhalation
- More precise dosage control
LIGA – Making BETTER Small Parts

<table>
<thead>
<tr>
<th>If You Make</th>
<th>(Sample Uses)</th>
<th>Switching to LIGA could result in</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cams • Gears • Levers</td>
<td>Wristwatches -- Proven high-volume production (100 million parts/year)</td>
<td>Burr-free parts with smooth, straight sidewalls for readily assembled, smoother operating mechanisms Benefit -- Longer mechanical life and substantially longer battery life</td>
</tr>
<tr>
<td>• Frames • Springs • Sliders • Latches</td>
<td>Safe and Arm devices for gun-launched munitions • Replacing devices previously made with watchmaker’s tools (EDM, stamping, etc.)</td>
<td>Parts and operating mechanisms that can be • 75% smaller • Rugged (proven to withstand 65,000 g’s) • Inexpensive • Reliable</td>
</tr>
</tbody>
</table>
(Metal) MEMS S&A Development Program

- **Customer:** PM Individual Weapons
- **Program Sponsor:** JSSAP (OICW System Enhancements STO)
 - Joel Goldman, Chief; Camilo Sanchez, STO Manager
- **Task A:** Explore advanced fabrication processes for improved, more economical production
- **Task B:** Fabricate and deliver LIGA parts and assemblies
- **Objectives:**
 - Rugged alternative to present (“watchworks”) S&A
 - 50% less cost and 75% smaller
 - Demonstrate advanced fabrication processes with potential to meet cost and size objectives
- **Key milestones:**
 - Contract start: Sept 2002
 - First hardware delivery: Complete
 - Advanced process development: Underway
Fuzing: Beyond Today’s Devices

• Requirements for munitions command, control, and fuzing demand
 – Increasingly complex functions
 – Smaller size
 – Lower cost
 – Higher precision
 – Lighter weight
 – High reliability
 – Reduced hazard of unexploded ordnance left on the battlefield

• LIGA-based devices
 – Readily integrated with micro optics and microelectronics
 – Enable multi-function modules that meet above demands
Foundry Manufacturing Capabilities

• Virtually any shape that can be drawn in two dimensions and which has vertical sidewalls (thickness)
• Individual part size
 – Max. lateral -- must fit within 3.4 inch diameter circle (parts typically oriented on their sides)
• Thickness -- 100 microns, min. to several mm max.
• Parts per wafer
 – From 1 to over 2500
• Materials
 – Metals -- Ni, Ni-Fe, Ni-Co, Au, Cu, Ag
 • Custom material properties (yield strength, grain size, and stiffness) if required
 • Solderable and optically black surfaces available
 – Plastics -- PMMA (acrylic; Plexiglas); Teflon
 • PMMA surfaces can be metallized, if required
• Feature sizes
 – Min. feature sizes, line widths, and spaces: 20 microns
 • Smaller features possible, depending on surrounding geometry
• Aspect ratios (ratio of feature height to width)
 – Standard maximum 70:1
 – Higher ratios possible
• Sidewall straightness/perpendicularity
 – ~1 micron per mm (~1 degree)
 – Slight tapers possible for mold draft
• Surface texture
 – Vertical (sidewall) surfaces defined within <1 micron; Ra <50 nm
 – Lateral surfaces can be lapped and polished to mirror finish
Quality Assurance and Analytical Capabilities

A good LIGA foundry will have

- ISO 9001:2000-based Quality System
- Statistical Process Control (SPC)
- Material Properties
 - Grain structure control
 - Material characteristics
- Metrology
 - Planarity and dimensional stability
 - Dimensions and tolerances, spring pitch variation, thickness, etc.
- Mechanical Properties
 - Yield strength
 - Spring constants
Materials Testing For Process Control

LIGA Tensile Bar

Gage length 1mm

LIGA Grain Structure
Summary

• **What is LIGA?**
 – Technology for fabricating precise micro components from metals and plastics

• **Why LIGA?**
 – Rugged, precise metal parts
 • Withstand high pressures and temperatures
 • Transfer useful forces and torques
 • Resist chipping and stiction
 – Finished components without micro machining
 • Superior feature definition and radius
 • Ultra-smooth sidewalls
 – Readily assembled to create mechanisms
 – Attach by soldering, welding, brazing, or adhesives
 – Easily integrated with electronics and optics

LIGA Manufacturing - - Enabling Technology for Next Generation Products
Getting Started is Easy…

• Send specifications and CAD design files for producibility analysis and quotation
 – Contact Mr. Bill Bonivert bbonivert@axsun.com
 – Ph: 925-373-3174 x 101

• AXSUN fabricates mask and sample parts
 – Try many designs on one wafer
 – Initial parts in as little as 6 weeks

• Evaluate samples

• Ramp up production
 – Sample mask can be initial production tool
 • Next parts in as little as 3 weeks

Mr. William Bonivert
Director, West Coast Operations
AXSUN Technologies, Inc.
7693 Longard Road
Livermore, CA 94550
Ph: 925-373-3174 x 101
Bbonivert@axsun.com

Mr. John Rasmussen
Manager of Government Programs
Axsun Technologies, Inc.
1 Fortune Drive
Billerica, MA 01821
Ph: 978-640-1661
Johnras@attbi.com