

ENVIRONMENTAL FATE AND TRANSPORT MODELING OF EXPLOSIVES IN THE UNSATURATED ZONE

Joseph Robb (AMEC) Jay Clausen (AMEC) Bill Gallagher (MAARNG)

National Defense Industrial Association 29th Environmental and Energy Symposium & Exhibition April 7-10 2003 Richmond, VA

MODEL OBJECTIVES

- Determine the likelihood that explosives would migrate to the water table
- Determine the appropriate soil action level for explosives that migrate to the water table.

SEASONAL SOIL COMPARTMENT MODEL (SESOIL)

 Simulates water movement, sediment transport and pollutant fate and transport

amed

SESOIL MODEL DEVELOPMENT FOR MMR

- Model divided into 4 layers with 10 sublayers each
- Meteorological Data from Hatchville, MA Station
- Site-specific soil properties
- Chemical constants

MODEL CALIBRATION

Parameter	Acceptable Range	Calibrated Value				
Variables						
Effective Porosity	0.25 to 0.45	0.43				
Disconnectedness Index	3.7 to 4.0	3.9				
Intrinsic Permeability	2.0E-09 to 1.0E-08 cm ²	3.8E-09 cm ²				
Calibration Targets						
Soil Moisture	12.2 to 12.4%	12.3%				
Evapotranspiration	45 to 55 cm/yr	46.5 cm/yr				
Recharge	60 to 70 cm/yr	69.8 cm/yr				
Surface Runoff	0 cm/yr	0.1 cm/yr				

SENSITIVITY ANALYSIS – EFFECT ON SOIL MOISTURE

SENSITIVITY ANALYSIS – EFFECT ON RECHARGE

SENSITIVITY ANALYSIS – EFFECT ON EVAPOTRANSPIRATION

amec^o USE OF SESOIL TO DERIVE SOIL CLEAN-UP STANDARDS

- SESOIL developed for EPA in 1981
- Used by NJDEP, ORDEQ, HIDOH, MADEP, WIDNR

OVERALL APPROACH - RDX

- Utilize SESOIL and Summers Groundwater Mixing Zone models
- Perform transport calibration so model predicts average observed mass flux and average observed groundwater concentration
- Use calibrated model to calculate soil concentration that results in 2 ug/L RDX in groundwater (EPA Lifetime Health Advisory)

DEMOLITION AREA 1

MODEL SETUP FOR DEMO 1

- Depth of Soil Contamination = 1 ft (0.3 m)
- Depth to water table = 40 ft (12.2m)
- Organic carbon = 0.5% (0-12 ft) and 0.01% (12-40 ft)
- Bulk Density = 1.8 g/ml
- Time = 100 years

MODEL INPUT - CHEMICAL PROPERTIES

	RDX	
Solubility (mg/L)	38.4	
Henry's Law Constant (m ³ -atm/mole)	1E-04	
Koc (L/kg)	70.8	

SESOIL + SUMMERS MODEL

 $Q_{p} = Flow through vadose zone$ $C_{p} = Soil concentration$ $Q_{a} = Flow through aquifer$ $C_{a} = Groundwater concentration$ $C_{GW} = [(Q_{p}C_{p}) + (Q_{a}C_{a})]$ $(Q_{a} + Q_{p})$

TRANSPORT CALIBRATION

- Estimate soil concentration (average, area weighted average, geometric mean, median)
- Vary source size to match observed mass flux (0.4 0.5 kg/yr)
- Vary mixing zone size to match average groundwater concentration (115 ug/L RDX)

DEMO 1 RDX IN SOIL

TRANSPORT CALIBRATION RESULTS

	Soil Concentration (mg/kg)	Source Size* (cm ²)	Predicted Mass Flux (kg/yr)	Predicted GW Concentration (ug/L)
Average (all results)	80.17	2 x 10 ⁵ (220 ft ²)	0.5	115
Area weighted average	22.32	6.5 x 10 ⁵ (700 ft ²)	0.5	115
Geometric mean	0.12	1.1 x 10 ⁸ (2.7 acres)	0.5	49
Median	0.06	1.6 x 10 ⁸ (4 acres)	0.35	2.6

PRELIMINARY RDX SOIL CLEANUP STANDARDS

Source Size (cm ²)	Source Concentration (mg/kg)	Predicted GW Concentration (ug/L)
2 x 10 ⁵ (220 ft ²)	1.2	2
(based on average calibration)		
6.5 x 10 ⁵ (700 ft ²)	0.4	2
(based on area weighted average calibration)		

COMPARISON OF RESULTS

- AMEC: 0.4 to 1.2 mg/kg
 - -Preliminary value
 - -Currently under EPA review
- AFCEE for CS-19 Site: 5.5 mg/kg
- INEEL: 0.2 to 2.0 mg/kg (currently under review)

SENSITIVITY ANALYSIS

- High Sensitivity
 - Estimate of initial soil concentration
 - Estimate of average groundwater concentration
- Moderate Sensitivity
 - Source thickness
 - Mixing zone thickness
 - Mixing zone length
- Low Sensitivity
 - Number of sublayers per layer
 - Literature Koc vs. Laboratory Measured Kd values

POTENTIAL NEXT STEPS

- Install Lysimeters to measure RDX in vadose zone pore water
- Refine SESOIL model based on observations

THANKS

- Impact Area Groundwater Study Program
- US Army Corp of Engineers New England District
- Air Force Center for Environmental Excellence