Cross-Connection Control vs. Fire Protection:

A WIN-WIN APPROACH FOR INSTALLING BACKFLOW PREVENTERS ON MILITARY FIRE SUPPRESSION SYSTEMS

Presentation By:

A-J Wangner, PE

RASco, Inc. 703-643-2952 www.rascoengineers.com

Purpose:

Outline an approach that lets us appropriately mitigate risk posed by crossconnections between fire protection systems and distributions systems, but not jeopardize sprinkler system performance.

Introduction

Background

- Fire protection systems (FPS)
- Backflow prevention devices (BPD)

Outline Approach

- Identify need/Establish Priority
- Hydraulic Analyses/BPD Design
- Implementation

Background: Fire Protection Systems

 Purpose--Control/suppress spread of fire

 Require specific flow and pressure for proper operation

Fire Protection Systems

- Water-Based Systems
 - Wet pipe
 - Standpipes
 - Dry pipe
 - Preaction
 - Deluge
- Supplied from domestic water distribution system

Fire Protection Systems

- Single [Alarm]
 [Detector] Check
- Static Pressure Loss as low as 1 psi
- Residual Pressure Loss as low as 3 psi
- Not a testable, approved BPD

Background: Backflow Prevention Devices (BPD)

- Purpose--To prevent the backflow of contaminating or polluting substances into the drinking water system
- Degree of Hazard dictates BPD type
 - Contaminate (High)--requires reduced pressure assembly [RPZ]
 - Pollutant (Low)--requires double check valve assembly [DCV]

Backflow Prevention Devices

Pressure Losses

	DCVA (6" dia.)	RPZ (6" dia.)
Type/Flow	Pressure Loss	Pressure Loss
0 gpm	4-6 psi	8-10 psi
500 gpm	2-7 psi	9-14 psi
750 gpm	3-8 psi	9-14 psi

- Periodic Maintenance
 - Annual (at minimum) testing
 - Annual flow through BPD

Systematic Approach

- IDENTIFY NEED
- ESTABLISH PRIORITY
- HYDRAULIC ANALYSIS
- DESIGN BPD
- IMPLEMENT

Identify Need

- 14 of 15 FPS studied (in Utah) had water that did not meet EPA Safe Drinking Water standards.
- 56 FPS studied had NTUs ranging from 1-2,000, oily residue, and bacteria "too numerous to count."
- AWWA recent study (most comprehensive to date)
 - 84 Wet-pipe FPS in 30 water utilities nationwide.
 - Pb & Cd over primary limits in all samples.
 - Fe, Mn, TDS, sulfate, color over secondary limits.
 - Reason for backflow is failure of single check.
 - 100 gal. of FPS water backflowed in only 3 minutes.

Identify Need

Identify Need

- Cross-connection survey
 - Familiarity with:
 - Local plumbing codes
 - Military branch/installation specific requirements
 - FPS types
 - (Example) 1996 I.P.C. all FPS; but 2000 I.P.C. specifies only wet-pipe

Establish Priority--Existing FPS

- High Degree of Hazard (HDOH) PRIORITY
 - AFFF
 - Corrosion control chemicals
 - Anti-freeze
 - Storage tanks
- Low Degree of Hazard (LDOH)
 - Wet-pipe, standpipes
 - Dry-pipe, preaction, deluge

Systematic Approach

- IDENTIFY NEED
- ESTABLISH PRIORITY
- HYDRAULIC ANALYSIS
- DESIGN BPD
- IMPLEMENT

Hydraulic Analyses--Necessary to Answer:

- What is flow and pressure <u>demand</u> of FPS, to function properly?
- What flow and pressure is <u>available</u> "out in the street"?
- What is BPD <u>impact</u> on flow and pressure available?

FPS Demand

- Data collection
 - Survey sprinkler system

- Type of FPS, type of sprinklers, pipe material, age of system, heights, lengths, fittings
- Classify building activity
- Model sprinkler system to determine Hydraulically Most Remote Area using NFPA guidance

Supply Available

- Hydrant Flow Testing
- Water distribution system model (If current and accurate)

Designing BPD Installation

- Correct BPD Type
- Devices must be approved by UL and FM

- Sized for FPS flow demand
- Space constraints
- Provisions to permit routine BPD testing

FIGURE 3: Conceptual supply versus demand curve showing adjustment for BPD

RASco, Inc.

Options for Getting a FPS to Accommodate a BPD

- Select another BPD
- Remove alarm check valve
- Change out sprinkler heads
- Change pipe material
- Create loops in FPS or distribution system
- Administrative

Systematic Approach

- IDENTIFY NEED
- ESTABLISH PRIORITY
- HYDRAULIC ANALYSIS
- DESIGN BPD
- IMPLEMENT

Implementation--Considerations

- Retrofit in priority posed by degree of hazard
 - HDOH take priority.
 - LDOH
 - When alarm checks require replacement.
 - When FPS is down for repairs.
- Ensure:
 - Proper BPD type
 - Proper installation
 - BPD tested, tagged, inventoried

APPROACH SUMMARY EXISTING FIRE PROTECTION SYSTEMS W/O BPDs

Summary

Satisfying environmental regulations and your cross-connection program does not have to come at the expense of fire protection.

- Retrofit existing Fire Protection Systems:
 - Using a systematic approach;
 - Based on degree-of-hazard priority.
- For new and retrofit jobs, ensure:
 - Proper BPD type, size, and model are installed;
 - BPD is properly maintained/tested.

