Integrating Environment, Chem-Bio Technologies, and A/E at a Package Handling Facility

Dr. Theodore M. Prociv President and CEO

National Defense Industrial Association
9 Apr 2003
Richmond ,VA

Versaring

Challenge

- Integrate Technologies For Identification Of Chemical And Biological Agent Intrusion
- Protect Of Personnel, Mail Handling And Package Processing Facility, And Ultimately The Public From CB Intrusion
- Approx. 70,000 ft² Facility
- Daily Processing Of 8-12 Trailers Of Materials
- Extensive Distribution Network

Versar's Scope

- Threat Assessment
- Requirements Analysis
- Engineering Assessment of Current Detection Technologies and Practices
- Engineering Design
- Design/Build
- O&M and Support

Technology Integration Issues

- Environmental:
 - Indoor Air
 - Sampling/Chain of Custody
 - Baseline
 - Chemical Analysis
 - Microbiology
- Chem-Bio
 - Chem/Bio Testing
 - Detection Technologies
 - Decontamination Processes
 - Individual and Collective Protection
- A/E
 - Air Flow/HVAC/Mechanical Engineering
 - Structural and Architectural Design
 - Materials Selection
 - Process Engineering and Process Flow
 - Clean Room Engineering

The 3 Pillars of Versar's Organization

- Environmental Services
 - Remediation
 - Scientific Services
- National Security
 - Homeland Defense
 - Military Defense
- Architecture, Engineering and Construction
 - Engineering & Design/Build
 - Weapons Demilitarization

Environmental Services Pillar

- Core Capability of Company
- Services provided include:
 - Remediation
 - Pollution prevention
 - Compliance management
 - Natural Resource Management

- Combines MilitaryDefense andHomeland Defense
- Chemical and Biological Protection
 - Chemical SuretyLaboratory
 - BSL-2/3 BiologicalWarfare Laboratory

Architecture, Engineering & Construction Pillar

- Design Build and Construction Management
- Civil Engineering
- Infrastructure Management

Design/Build | Construction | Facility Design | Demilitarization | Energy

Mitigation Technologies

- Will Address Four Threats:
 - Biological
 - Chemical
 - Radiological
 - Explosive

Concept of Operations

- Contamination Avoidance (Intercept the Threat)
- Individual and Collective Protection (Reduce the Impact)
- Response Scenario (What Happens if...)
- Operational Issues (Day to Day Operations, Training, Maintenance, etc.)

Design Issues

- Biological Detection: Time Delay from 1 hour up to 48 hours (Depends on technology)
- Chemical Detection: Real Time
- Radiological Detection: Real Time
- X-Ray-Explosive Detection: Real Time

Prior Lessons Learned

- Biological Protection Drives "Retention Time" and therefore design footprint
- No "perfect" system
- Lessons from classic military NBC programs may not apply in civilian arena due to lack of intel on specific threats

Biological Threats in "Packaged Materials And Mail"

- Primarily bacillus anthracis (anthrax)
 - Still "most likely" threat scenario
- Other pathogens of interest
 - Bacteria
 - Anthrax
 - Plague
 - Brucellosis
 - Viruses
 - Smallpox
 - Others
 - Toxins
 - Botox
 - Ricin
- Issue: Can Exterior Sampling/Detection Warn/Intercept unopened packages/mail?
 - Residue
 - "Exfiltration" from letters, etc.

Real (or Near Real) Time Detection

- Requirement:
 - Detect and respond to potential biological pathogens in mixed stream of materials in real-time
- Solution:
 - Layered Approaches
 - Particle Size Distribution (gross particle load)
 - Particle Discrimination (bio vs. non-bio, live vs. dead)
 - Layered Detection Systems
 - PCR
 - Flow Cytometry
 - Antigen-antibody reactions

Procedure:

- Collection (aerosol, spincon, vacuum/HEPA filtration, etc.)
- Preparation (extraction, preparation, buffering, etc.)
- Sensing (PCR, fluorescence, culture, etc.)
- Output (colorimetric, charts, graphs, dials, lights, codes, alarms, etc.)

Real (or Near Real) Time Detection Operational Issues

- Sampling Process
 - Packages and mail (6 sided, tubs, sweeps, composites, etc.)
 - Envelopes ("poof" in sorting machines)
 - Surfaces (tabletops, bins, sorting machines, etc.)
 - HVAC sampling (HEPA filters)
 - HEPA Vacuum Sampling (aggressive suction)
- Sampling Protocol and Personnel
- Personnel Qualifications and Certification
- Sample Chain of Custody and Records
- Operation and Maintenance of Systems

Examples – Integrated, Multiple Technology Systems

- Biological Detection
 System (Smiths)
 Northrup/Grumman Team
 19 USPS Facilities
- Lockheed-Martin Bio
- Biological Aerosol Sentry and Information System (BASIS) – Deployed in Metro, DC area

Chemical Threats

- Chemical Threats in Packages/Mail Agents
 - Immediate Danger (nerve agents)
 - Short incubation (hours for blister agents)
 - Many Ingestion Pathways (dermal, inhalation, ingestion)
- Threat Scenarios Vary
 - Localized (1-10 ft)
 - Powders
 - Liquids
 - Area Threats (wider areas of concern)
 - Vapor
 - Gas
 - Aerosol

Versaring

Chemical Detection

- Problem: Detect and respond to potential chem agents in mixed stream of materials in real-time ("sniffing" exterior vs. interior detection)
- Solutions:
 - X-ray (for "suspicious" configurations)
 - Point detection
 - Area detection
- Based on:
 - Multiple technologies
 - Handheld vs. integrated

Real Time Detection

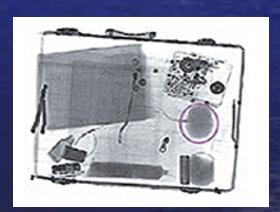
- Integrated Systems Now on Market
 - Ex: Smiths Detection Saber Centurion
 - Ties into HVAC
 - Could be modified to sample packages
 - Handheld SystemsAvailable
 - M9 paper
 - M256 kit
 - CAM
 - others

Versaring

Commercial Detection and Identification Technologies

- Vapor Analysis
 - FID
 - IMS
 - PID
 - FID/PID
 - GC
 - GC/MS
- Solids/Liquids Analysis
 - IR
 - GC
 - GC/MS

Operational Issues With Chemical Detection


- Understanding capability
- Training
- Equipment Calibration/Background "Noise"
- O&M requirements
- Response Scenarios
 - Safe area
 - Response planning

Versaring

Explosive Detection

- Older "baggage style" xray system not effective against today's threats
- Enhanced Systems
 - Threat Image Projection (TIP)
 - Screener Assist Technology (SAT)
 - Networking
 - Redundancy

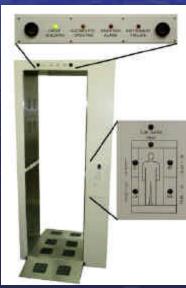
Trace Explosive Detection

- Real Time
- Example: IONSCAN® technology (similar to handheld trace analyzers) uses radiological source to ionize then analyze traces
- Detects RDX, PETN, TNT, Semtex, Nitrates, NG, HMX and others
- Side benefit detects trace drugs

Explosives Detection Operational Issues

- Training/Certification of Operators
- Response Scenarios
- Explosive-ProofStorage Area
- Throughput
- Redundancy
- Operations and Maintenance

Radiological Detection


- Problem: Assessing Radiological Threat from Mail
- Radiological "Refresher"
 - Ionizing Radiation harmful to humans
 - Alpha (largest emitted particles, stopped by paper, ingestion primary risk)
 - Beta (higher energy particles, like electrons, penetrates steel)
 - Gamma (electromagnetic radiation, penetrates concrete and lead, Immediate danger)
 - Health Effects
 - Acute (radiation poisoning)
 - Chronic (mutations, cancer)

Detection Technologies

- Hand-held Survey Instruments
- Pass-through monitors
- Area Monitors
- Air Sampling Monitors

Radiological Detection Operational Issues

- Training
- Health Physics Support (also applies to x-ray machine dosimetry)
- Calibration/O&M of Equipment
- May be Immediate Threat to Health and Safety
- Response strategy
 - Isolate/Evacuate Area
 - Contain
 - Remedy

- Solution Requires Integration Of Chem-Bio, HAZMAT, Environmental and A&E Talents
- Technology Is Available, But...
- There Is No "Silver Bullet"
- Cost Benefit Analysis Vs. Risk Criteria