

Introductions

Authors

- Karl Hale, VP Engineering (Presenter)
- Wanlin (Forest) Liang, PhD
- Paul Liu, PhD (MPT)
- Joe Klimek
- Richard Ciora (MPT)

Startech:

15 Old Danbury Rd. Suite 203 Wilton, CT 06897 203-762-2499 Media & Process Technology: 1155 William Pitt Way Pittsburgh, PA 15238 412-826-3711 What are the Energy Needs? **STARTECH** Now and in the Future.

- Energy from calorific waste streams.
- Distributed energy production.
- Distributed hydrogen production.
- Reduce dependence on fossil fuels.

The Startech Plasma Converter System and StarCell[™] Hydrogen Separation System Can Satisfy These Needs.

Advantages of Thermal Plasma

- Superior Environmental Performance
- "Massless Heat"
- High Temperatures
- Recover Valuable Commodities: Hydrogen
- Low Gas Volumes

The Startech PCS

Feed Systems

Loss-in-Weight Liquid Feed

Feed from drums or tank

STARTECH

- Peristaltic pump with dedicated transfer hose
- Metered steam blend and injection into vessel
- Multiple automatic solid feed configurations available based on feed materials:
 - Ram Feed
 - Shredder
 - Conveyor
 - Auger
 - Rotary Valve

Plasma Vessel

Vessel

- Two segment design
 - Main Vessel
 - Vessel Lid
- Refractory lined walls
- Sealed, negative pressure operation
- Single PCG and melt exit port

Melt Removal

- Melt/Quench Cart
 - Continuous melt removal into watercooled cart
 - Auger screw design
- Tilt removal to side

Types of Plasma Torches

Gas Polishing System

- Removes solids at three stages:
 - >10 microns, >1 micron, and >0.3 microns.
- Cools PCG[™] in two stages:
 - ~1,400°C to 900°C, and 900°C to 40°C (10⁴°C/second).
- Neutralizes and removes:
 - acid gases, nitrogen oxides, heavy metals, organic compounds.
 - Removes entrained water and heats PCG[™].
 - Maintains negative pressure to pull PCG[™] through system.

Cooling Water System

Plasma Skid

Chiller

Gas Polisher

DI CW System

Control System

- PLC Based control system
- Skid Mounted Control
 Panels with Remote I/O
- Centralized Operator
 Station
- PC Based Human
 Machine Interface
- Real-Time Video and Process Monitoring

The Startech PCS: Advantages

- Non-Combustion Reducing Vessel Atmosphere:
 - Dioxins/furans (<0.05ng TEQ/Nm³)
 - NOx (<50ppm)
 - 1/10th the gas flow of an oxidizing system, allowing much higher efficiency gas cleaning.
- Low Operating Cost:
 - Energy efficient
 - Highly automated
 - Low maintenance
 - Potential for sale of valuable products HYDROGEN
- Low Capital Cost:
 - No secondary combustion chamber (as in oxidizing systems).
 - Smaller equipment to handle lower gas flow volumes
 - Standardized designs/components allow shorter delivery schedule
 - Skid-mounted modular equipment for lower installation cost
 - Standard commercial off-the-shelf (COTS) components

Plasma Processing of MSW - Thermodynamics

STARTECH

- Thermodynamic analyses with air and CO/H2 as plasma media.
 Steam used to convert C to CO, also bolsters H2 content.
- Excess moisture (up to 1.5 times stoichiometric) minimizes particulate carbon formation.
- Hydrogen concentration 47% to 57% by volume.
- Approximately 1.8 to 2.0 Nm³ PCG/kg waste.

Plasma Processing of **Medical Waste - Thermodynamics**

- Thermodynamic analyses with air and CO/H2 as plasma media.
- Steam used to convert C to CO, also bolsters H2 content.
- Excess moisture (up to 1.5 times stoichiometric) minimizes particulate carbon formation.
- Hydrogen concentration 54% to 57% by volume.
- Approximately 2.3 to 2.6 Nm³ PCG/kg waste.

Plasma Processing of Used Tires - Thermodynamics

- Thermodynamic analyses with air and CO/H2 as plasma media.
- Steam used to convert C to CO, also bolsters H2 content.
- Excess moisture (up to 1.5 times stoichiometric) minimizes particulate carbon formation.
- Hydrogen concentration 50% to 53% by volume.
- Approximately 4.5 to 5.5 Nm³ PCG/kg waste.

PCS Products Produced

StarCell[™] Hydrogen Separation and Purification Membrane

StarCellTM Hydrogen

 Individual membrane tubes are produced by the proprietary Thin Film Chemical Vapor Infiltration process.
 Tubes are potted together into a bundle.

> Each bundle is installed into into a housing module.

StarCellTM Hydrogen

StarCel

- Modules are connected together with three manifolds:
 - PCG In
 - H_2 Out
 - PCG Out
- A PCG heating section is integrated into the module chamber.
 - StarCell[™] equipment is installed in a standard cabinet enclosure.
 - Instrumentation includes monitoring of the pressure and temperature of the three gas streams.

StarCell[™] Performance

StarCell[™] Commercialization

- Preliminary economics indicate that distributed H₂ can be produced at a price very competitive with worldclass steam/methane reforming plants.
- Depending on waste processed, H₂ cost is projected to be 1/2 to 1 times the current production cost.
- Next step is a development/commercialization program:
 - Public sector cost sharing
 - Optimize StarCell™
 - Produce H₂ from actual PCG from waste materials
 - Fabricate industrial prototype
 - Beta site testing
- Startech expects commercial product in approximately 12 months.

In Summary

- PCS processes a wide range of feedstocks to produce PCG.
- Safer than environmental standards.
- StarCell[™] separates out the Hydrogen from the PCG and similar mixtures.
- Undergoing final commercial development in the next 12 months.
- Revenue potential on front and back-ends.

Back-Up Slides

	L,			 •											

Plasma vs. Incineration and Landfill

- Startech PCS
 - >1,400°C
 - Produces
 Products
 - Ultra Low Emissions
 - Endothermic Process
 - Rapid
 - 40% to 50%
 O.T.E.
 - High Public Acceptability

- Incinerator
 <1,250°C</pre>
 - Produces
 Wastes
 - Higher Emissions
 - Exothermic Process
 - Rapid
 - 15% to 25%
 O.T.E.
 - Very Low Public Acceptability

- Landfill
 - Uncontrolled

STARTECH

- Produces
 Wastes
- Very High Emissions
- Exothermic Process
- Very Slow
- Efficiency Not Measurable
- Very Low Public Acceptability

Wastes as Resources

		Medical Waste		Used Tire	
MSW (3,100 kWh/ton)	<u>wt%</u>	<u>(4,800 kWh/ton)</u>	<u>wt%</u>	(<u>8,900</u> kWh/ton)	<u>wt%</u>
Paper	25.97	Cellulose	18.40	Carbon black	30.50
Yard	8.25	Glass	11.04	Rubber	46.00
Food	7.43	Polypropylene	11.04	Sulfur	2.50
Plastics	7.16	Polyethylene	11.04	Nitrogen	1.00
Metals	5.32	Polystyrene	7.36	Steel	15.00
Rubber, leather, textile	4.50	Organic tissue	3.50	Ash	5.00
Glass	3.75	Stainless steel	3.68		
Wood	3.61	PVC	3.68		
Others	2.18				
Moisture	31.84	Moisture	30.25		
Total	100.00		100.00		100.00

- Current practices lead to harmful emissions and wasting of resources.
- With the Startech process:
 - "Where there are people there is waste. Where there is waste, there is hydrogen. We can distribute hydrogen where it is needed."

Specific Energy Required

- The energy required to process a given waste stream depends on the properties of the specific waste.
- Empirical data for various wastes is as follows:

	kWhr	10 ³ BTU/ton		
Materials	[min.]	[max.]	[min.]	[max.]
Steel scrap melting	584	584	1810	1810
Pyrolysis of hospital waste	595	1101	1844	3415
Pyrolysis of PCB oil	441	1212	1366	3756
Pyrolysis of MSW	771	1542	2390	4780
Pyrolysis of auto tires	1872	1872	5805	5805
Pyrolysis of pathological wastes	1968	1968	6100	6100
EAF dust treatment	1487	1927	4610	5976
Niobium recovery	2203	3194	6829	9902
PGM recovery from auto catalyst	3029	4405	9390	13658
Ceramic production	2533	15022	7854	46575