Corrosion Control and Cath Systems

NDIA Symposium April 9, 2003

by
John P. Kay
Corrpro Companies, Inc.

ECONOMICS AND CORROSION CONTROL

Corrosion Control is typically:

- Less than 10% of the Replacement Cost
- 1%-3% of the Cost of a New Structure

Corrosion - A Natural Process

CORROSION

IRON

IRON OXIDE

PRACTICAL GALVANIC SERIES

Material	Potential*	
Pure Magnesium	-1.75	
Magnesium Alloy	-1.60	
Zinc	-1.10	
Aluminum Alloy	-1.00	
Cadmium	-0.80	
Mild Steel (New)	-0.70	
Mild Steel (Old)	-0.50	
Cast Iron	-0.50	
Stainless Steel	-0.50 to + 0.10	
Copper, Brass, Bronze	-0.20	
Titanium	-0.20	
Gold	+0.20	
Carbon, Graphite, Coke	+0.30	

M.

^{*} Potentials With Respect to Saturated Cu-CuSO₄ Electrode

Prerequisites for Corrosion

- Anode
- Cathode
- Electrical ConnectionBetween Anode andCathode
- Electrolyte

- 1) ANODE
- 2) CATHODE
- 3) ELECTROLYTE
- 4) ELECTRICAL CONNECTION

Underground Structures

Causes of Corrosion

- Dissimilar Metals
- Non-Homogeneous Soil
- Differential Aeration
- Microbiological Attack

Coupling to Dissimilar Metals

Coupling to Dissimilar Metals

Corrosion of iron when coupled to copper service line.

Dissimilar Soils

Corrosion Caused by Differential Aeration

Corrosion Cell

How Cath Protection Works

- Corrosion occurs where current discharges from metal to electrolyte
- The objective of cathodic protection is to force the entire surface to be cathodic to the environment

Cathodic Protection

Galvanic Anode Cath

Current is obtained from a metal of a higher energy level

Galvanic Cathodic Protection

Impressed Current Cath

Anodes

Rectifier

Wiring

Impressed Current System

System Ch

Galvanic

- No external power
- Fixed driving voltage
- Limited current
- Small current requirements
- Used in lower resistivity environment
- Usually negligible interference

Impressed

- External power required
- Voltage can be varied
- Current can be varied
- High current requirements
- Used in almost any resistivity environment
- Must consider interference with other structures

Stray Current Due to Impressed Current Cathodic Protection System

Stray Current

Bonding Across a Bell and Spigot or Slip-joint

Corrosion is the leading contributor to cast and ductile iron water system breaks!

Anode Installation

Anode lead wire connection to pipe using spot welder.

Water Storage Tanks and Treatment Facilities Possess the Four Requirements f Cells to Form

- Electrolyte: Water and/or Wastewater
- Conductor: Steel Tank or Equipment
- Anode: Metal in contact with the electrolyte
- Cathode: Metal in contact with the electrolyte

Typical Horizontally Suspended Anode Systems

Typical Horizontally Suspended Anode Systems

Typical Vertically Suspended Anode Systems

Typical Vertically Suspended Anode Systems

Presented by:

John P. Kay Corrpro Companies, Inc.

610 Brandywine Parkway West Chester, PA 19380

Phone: 610-344-7002 Fax: 610-344-7092

Email jkay@corrpro.com

