

Public Perception of Disease Clusters and the Need for Health Education

Presented by:

Keera Cleare
Army Environmental Policy Institute

April 9, 2003 Richmond, Virginia

PURPOSE

- Discuss the big picture of environmental health and its relation to human health
- Promote the need for health education within local communities

What are Disease Clusters?

- Occurrence of a greater than expected number of cases of a particular disease within a <u>geographic</u> <u>area</u>, a <u>particular group of people</u> or a certain <u>period</u> <u>of time</u>. (NCI)
- One type of cancer, <u>rare type</u> of cancer, OR cancer in <u>age groups not</u> usually affected. (CDC)
- A <u>specific type</u> of cancer occurring substantially more often than expected in a <u>particular community</u> (ACS)

SOME KNOWN CLUSTERS

- Birth defects Mothers who took thalidomide during pregnancy in the 1960s
- Legionnaire's Disease contaminated water in air conditioning ducts in the 1970s
- Pneumonia Homosexual men in early 1980s
- Mesothelioma Asbestos used in ship building during World War II and in manufacturing many industrial and consumer products
- Lung Cancer- Smoking

RISK

The <u>probability</u> that a substance will produce harm under certain conditions of use.

COMPLETED EXPOSURE PATHWAY

Environmental Health Paradigm

CLUSTER INVESTIGATIONS

Methodology

- Lengthy and expensive process
- Must be able to prove cause-effect relationship
- Quantifiable means of measuring
- Quantifiable means of expressing the measurement
- Quantify % population responding

CLUSTER INVESTIGATIONS

Methodology: Challenges

- Methods for finding cause-effect relationships are limited
- Cases are too few for a clear analysis
- Must be able to address significance
- Sometimes politically driven
- Must be able to separate the exposed and effected populations from the general population

COMMUNICATION

What is Perception?

- Perception is reality
- The conscious mental awareness and interpretation of a sensory stimulus.
 (Source: Academic Press Dictionary of Science Technology)
- Obtained from surroundings, specifically through senses and beliefs

PERCEPTION of RISK

- Uncertainty
 - Uncertain outcomes
 - Invisible vs. visible
 - Uncertain about exposure
- Loss of Control
 - Unable to determine degree of risk
 - Long life cycle of site
 - Slow clean up

PUBLIC PERCEPTION OF RISK

- Based on research by Paul Slovic, Univ. of Oregon, April 1987
- Examine judgment used to characterize and evaluate hazardous activities and technologies
- Research:
 - Helps policy makers and analysts to anticipate public response
 - Helps health and safety professionals communicate risk to general public

PUBLIC PERCEPTION OF RISK

(cont'd)

- Risk assessment
 - Intellectual discipline designed to aid in identifying, characterizing, and quantifying risk.
- General public rely on "risk perception"
 - Intuitive risk judgments that come from experience (media, culture etc.)
 - "Zero Risk Society"

PUBLIC PERCEPTION OF RISK: Judgment Scale

- Status Characteristics
 - Voluntary
 - Dread
 - Knowledge
 - Controllability
- Benefits to Society
- Number of Deaths in an average year
- Number of Deaths in a disastrous year

PUBLIC PERCEPTION OF RISK: CONCLUSIONS

- Perceived risk is quantifiable and predictable
- Risk means different things to different people
- Acceptability is proportional to benefits
- Public will accept risk from voluntary activities

PUBLIC PERCEPTION OF RISK

(cont'd)

- Presence of evidence does not change perception
- Strong initial views are resistant to change
- Contrary evidence tends to be dismissed as unreliable

CASE STUDIES (cont'd)

- Fort Ord, CA
 - Prescribe burn activities hindered
 - UXO cleanup activities hindered
- Fallon Naval Air Station, Fallon, NV
 - ALL cancer cluster
- Vieques, PR
 - Community opposes to Navy training

- MMR, MA
 - Region 1 EPA ordered the removal of UXO from Camp Edwards
 - Restriction on Army training activities
- Sierra Army Depot, NV
 - Senator and public seeks review of OB/OD permit, files suit against DA and installation
- Kelly Air Force Base, San Antonio, Texas
 - Community concern about elevated cancer rates and birth defects

COMMUNICATION/ EDUCATION

- Educate people about risk
- Reveal hidden agendas
- Must be two-way process
- Quantitative risk comparisons
 - Not usually helpful

COST ANALYSIS

Table 2:	Funds spent at and actions completed in
	2000 to ATSDR.

ATSDR ACTIVITY	TOTAL	\$%
Health Assessments	\$30,680,401	52%
Health Studies	\$11,083,807	19%
Toxicological Profiles	\$13,556,640	23%
Health Education	\$3,795,150	6%
TOTAL	\$59,115,997	100%

COMMUNICATION

- Help community find and remediate the problem
- Build rapport (communication strategy)

Risk Communication

HEALTH EDUCATION

- Agency for Toxic Substances and Disease Registry (ATSDR)
- RABs
- Help community understand
 - Cancer
 - Contaminants
 - Exposure pathways
 - Limitations of available investigative methods

CONTACT INFORMATION

Keera S. Cleare

Army Environmental Policy Institute 101 Marietta Street, Suite 3120 Atlanta, GA 30168-6202 404-524-9364 ext. 279

404-524-9368 (fax)

KCleare@aepi.army.mil

