

29th Environmental and Energy Symposium & Exhibition

April 7-10, 2003.

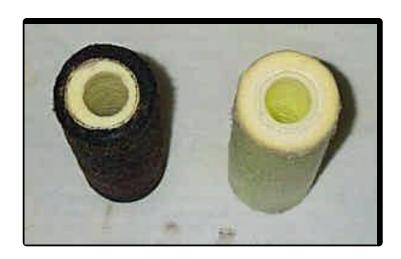
Hal Alper

President

MYCELX Technologies Corporation

What is MYCELX?

- A "Curable Polymeric Surface Modification"
 - Composition Patents: 5,437,793 and 5,746,925
 - Chemical Abstract Services (CAS) #173967-80-1 and #173967-81-2
- The reaction product of several natural drying oils, glycerides and isobutyl methacrylate
- MYCELX cross-links during the curing process (permanently infusing into the desired substrate)
- MYCELX-infused substrates are extremely "Hydrophobic" & "Oleophilic"


UNIQUE PROPERTIES OF MYCELX CHEMISTRY

- Permanent bonding into the substrate
- Full transfer of properties upon binding
- Affinity-ability to bind disparate phases of organic compounds
- Fixed footprint
- Low generated pressure differential to filter saturation
- Ability to handle concentrated slugs without clogging

MYCELX Cartridge Saturation (New vs. 50%)

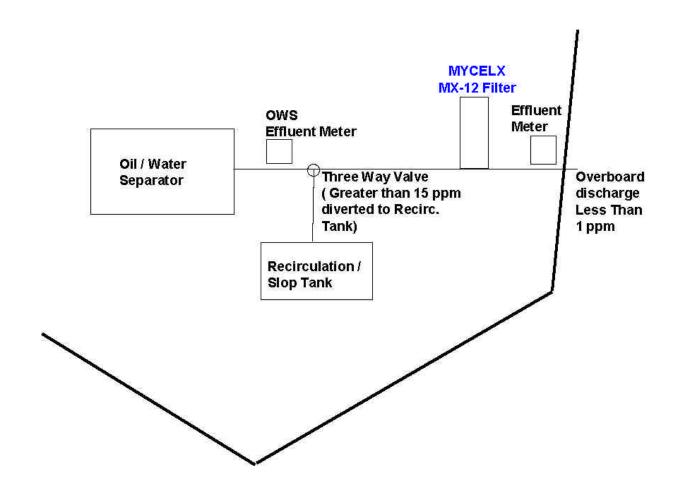
KEY ORGANIC COMPOUNDS CAPTURED BY SURFACE MODIFIED FILTRATION DEVICES

- Aromatic Hydrocarbons BTEX
- Cycloalkanes
- Crude, Fuels, Lubes Oils, Transformer Oils, Vegetable Oils
- Complex Organics, Monomers & Polymers
- POPs (i.e., PCB's, Dioxin, Pesticides)
- Chlorinated Solvents (TCE/PCE)
- Phenolics
- MTBE
- Heavy Metals existing as Organ-Metallics

MARINE AND NAVAL BILGE WATER APPLICATION

MYCELX filters employed in treatment of Naval bilge water

MARINE AND NAVAL BILGE WATER APPLICATION



MYCELX filter removing emulsified oil from discharge water on oil drilling ship.

SCHEMATIC OF MYCELX UNIT DEPLOYMENT ON CRUISE SHIP

PROTECTION OF CROSS FLOW MEMBRANE FILTRATION DEVICES

MYCELX unit protecting Reverse Osmosis unit from organic fouling

PCB REMEDIATION AT SUPERFUND SITE

UNDERGROUND UTILITY –PCB & OIL MANHOLE EFFLUENT

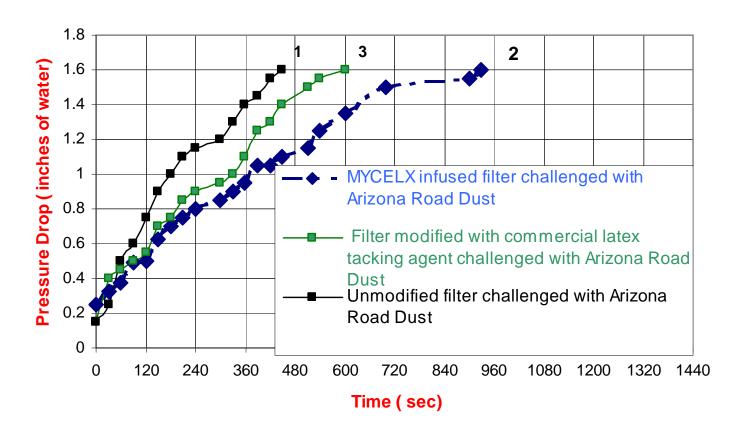
Sample Date	6/22/00	Volume	PCR 1061	Fluoride	TPH	O&G	Tof Pb	Tot Cu
Effluent		N	ug.1 1.0	mg/l 0.24	mg./I 5.00	mg1 5.00	mg/l C.013	mg/I 0.01
Manhole influent	2	คกกก	1.0	N 28	218	252	0.0065	0.01
Manhole Influent	17	6000	1.0	0.23	20*	6.00	22	0.27
Manhole influent	19	6000	40	3.01	139	141	1.2	0.094
Manhole Influent	33	6000	. 0	0.01	128	108	150	3.3
Manhole influent	46	6000	100	×0.01	2140	141000	31	1.8
Manhole influent	49	6000	+0	3.0÷	103	93	0.077	0,016
Manhole influent	34	6000	1.0	0.18	E.E	5.00	0.013	87
Avg Influent			56.85	0.130	367.851	17698.000	33.050	11.563
Max Influent			950.0	0.310	2140.000	141009.00 0	150.000	87.000
Min Influent			1.0	0.010	5.000	5.000	0.007	0.010
Avg			0.123077	1.34615	0.013592	0.0002825	0.000575	0.00086
Avg = Differential			7.1	-0.11	5 362.9	17593.0	33.0	5 11.6

Removal of BTEX and MTBE from Contaminated Surface Water (ppm)

	_	_	_	_	_
Sample ID	MTBE	<u>Benzene</u>	<u>Toluene</u>	Ethyl benzene	Xylene*
Inlet #1 **	87	2.0	12	3.8	24
Discharge #1	0.18	0.004	0.016	0.002	0.012
Knockdown #1	99.8%	99.8%	99.9%	99.9%	99.9%

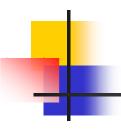
Sample ID	MTBE	Benzene	<u>Toluene</u>	<u>Ethyl benzene</u>	Xylene*
Inlet #2	17	0.92	3.2	0.48	2.6
Discharge #2	0.21	0.034	0.14	0.030	0.14
Knockdown #2	98.7%	96.3%	95.6%	94%	95%

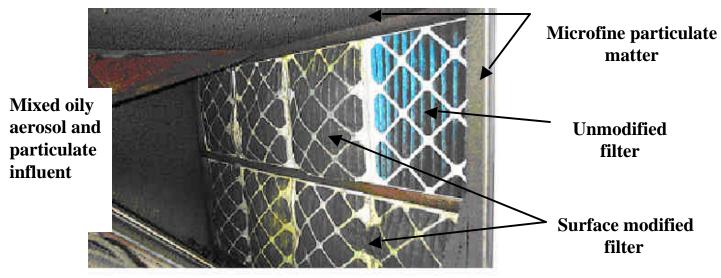
^{*}Average of all Isomers


^{**}USEPA Method 8020 - Volatile Aromatic Hydrocarbons

FILTRATION OF AIRBORNE ORGANIC POLLUTANTS

Comparison of Pressure Drop and Dust absorption characteristics


Arizona Road Dust (1-10 micron)



COMPARISON OF DUST HOLDING CAPACITIES TO A CONSTANT PRESSURE DROP

		Dust
	Arrestance	holding
Challenged with	%	capacity
Arizona Road dust alone		(grams)
1.Unmodified filter	37.26	14.16
2.MYCELX infused filter	62.75	50.09
3.Filter modified with commercial tackifier	33.72	16.89

FILTRATION OF OILY AEROSOLS

Collection of microfine particulates by surface modified filters in mixed oily aerosol air stream

PURIFICATION OF AIR IN HOSPITALS

Picture showing the difference between new and used filter utilized to purify incoming air at SLOAN KETTERING Cancer Research Center. Filter has turned black due to Diesel soot emissions from city buses which stop near air intake.

CONCLUSIONS

- Incorporation of emerging technologies with filter technology is making it possible for filter media to perform to more rigorous emergent regulations.
- Surface modification of filtration devices with MYCELX renders it amenable to fulfilling outstanding requirements in military, industrial and medical applications
- Surface modified filtration devices are highly efficient with no reentrainment or re-release of contaminants.
- Provide the "safety margin" to meet stricter environmental discharge requirements.
- Protect expensive technologies from mixed particulates/oily influent.
- Non-toxic and Approved by EPA and California Fish & Game Commission for Pollution Remediation. Easily & inexpensively disposed (No Residual Water).