L.D. Chen
National Advanced Driving Simulator
The University of Iowa
Iowa City, Iowa

http://www.nads-sc.uiowa.edu
OUTLINE OF TALK

• Overview
• Applications
• NADS Technologies
• Extending M&S Capabilities
NATIONAL ADVANCED DRIVING SIMULATOR
NATIONAL ADVANCED DRIVING SIMULATOR
• 9 DOF motion system over 64’x64’ bay
• 6 DOF vehicle motion
• Immersed visual environment
• 3D auditory system
OUTLINE OF TALK

• Overview
• Applications
• NADS Technologies
• Extending M&S Capabilities
APPLICATIONS AND IMPACT

• Highway Safety Requires Fundamentally New Research Tool
 – Over 90% of crashes involve human error
 – Highway crashes in US kill over 40,000 persons per year, at a cost of $230 billion

• Reduction in Time-to-Market
 – Requires evaluation of driver-in-the loop early in the product design and development phase

• High-Quality Vehicles Requires Engineering Fidelity Virtual Proving Grounds (I/UCRC Objectives)
DRIVER RESPONSE IN CRITICAL MANEUVER
NETWORKING ADVANCED DRIVING SIMULATORS

Army Ride Motion Simulator

National Advanced Driving Simulator
COMMON DATABASES:
TACOM & NADS

TACOM

APG
COMMON DATABASES: TACOM & NADS
VIRTUAL PROVING GROUND
OUTLINE OF TALK

• Overview
• Applications
• NADS Technologies
• Extending M&S Capabilities
NADS INSTRUMENT

- Prime contractor (TRW)
 - System integration
- Visual system (E&S)
 - Harmony IG
- Motion system (MTS)
 - Motion and vibration systems
- Vehicle cabs (DRI)
 - Road & vehicle feel
- Audio system (I*Sim)
 - 3D Sound
- SDM
VISUAL SYSTEM

• Harmony image generator based photorealistic visual environment
 – Field of view, 360-degree (H), 40-degree (V)
 – 21,000 polygons, 60 Hz
 – 250:1 contrast ratio
 – 1.1 (high resolution inset), 3.5 (forward) and 7.5 arc minute per optical line

• Correlated with other sensory stimulus
Motion and Vibration

<table>
<thead>
<tr>
<th>Motion Subsystem</th>
<th>Axis</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>Displacement</td>
<td>Velocity</td>
</tr>
<tr>
<td></td>
<td>±ft</td>
<td>±ft/sec</td>
</tr>
<tr>
<td>X-Y</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>X-Y</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>Hexapod</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>±deg</td>
<td>±deg/sec</td>
</tr>
<tr>
<td>Hexapod</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Hexapod</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Turntable</td>
<td>330</td>
<td>60</td>
</tr>
<tr>
<td>Vibration</td>
<td>0.2</td>
<td>8</td>
</tr>
</tbody>
</table>

Specifications include:
- **Displacement**: ±ft
- **Velocity**: ±ft/sec
- **Acceleration**: ±ft/sec²(±g)
- **Rotation**:
 - ±deg
 - ±deg/sec
 - ±deg/sec²
- **Translation**:
 - ±in
 - ±in/sec
 - ±lbf
NADS CABS

- Four actual vehicle cabs (Malibu, Taurus, Cherokee and Freightliner truck cab)
- Interfaced with full range of standard, optional and new design vehicle instrumentation
- Interfaced with data collection, reduction and verification
CONTROL FEEL SYSTEM

• Steering, Brakes, Clutch, Transmissions and Throttle in Response to Driver Inputs, Vehicle Motion, and Tire/Road Interaction

• Cruise Control, Power Steering, Existing Drive Trains, ABS.

• High Bandwidth Cueing Feedback
DATABASE AUTHORING TOOLS

- Commercial, Industrial, Rural, and Residential
- Three-Dimensional Objects
- User-Friendly Scenario Definition and Control Tools
TILE-BASED DATABASES
TILE MODULES

660 feet
NADSDYNA

- Multi-body Vehicle Dynamics
 - Software for real-time vehicle simulation
- Vehicle Body Preprocessor
 - Components
 - Joint Library
 - Standard and Composite
 - Force Element Library
 - TSDA and RSDA
 - No automatic redundant constraint checks
OUTLINE OF TALK

• Overview
• Applications
• NADS Technologies
• Extending M&S Capabilities
HIGH MOBILITY MULTIPURPOSE WHEELED VEHICLE (HMMWV)
HMMWV MODEL

SPHERICAL JOINT
TRANSLATION JOINT
REVOLUTE JOINT
DISTANCE CONSTRAINT
STNTHETIC
ENVIRONMENT EXAMPLES
STNNTHETIC ENVIRONMENT GENERATION/ACQUISITION
SYNTHETIC ENVIRONMENT ACQUISITION

- Software Tools
- Dynamic Terrain Modeling and Simulation
- Geo-specific Database
- Ground Truth Acquisition Tool
STNTHTETIC ENVIRONMENT EXAMPLES
DEERE PROVING GROUND
COLLABORATIVE ENGINEERING ENVIRONMENT
INTELLIGENT TRANSPORTATION SYSTEM APPLICATIONS
SUMMARY

• High-fidelity Simulator for Highway Safety Research

• Driver-in-the Loop Simulation: Reducing Time-to-Market
 – Precision Motion Systems
 – Realistic Synthetic Environment
 • Visual and auditory system
 • Virtual environment modeling
 • Synthetic environment acquisition and rendering
 – Real-Time Dynamic Simulation
 – High Fidelity Dynamic Simulation
 – Driver model