Correlation of Analysis and Firing Test Results for a Turreted Gatling Gun System

Prepared by: Callista Rodriguez
Presented by: Jim Talley
General Dynamics Armament Systems
Burlington, Vermont

17 April 2002
Objective: To Obtain a Correlated Model for system design studies and requirements flowdown

- Traditional Linear Finite Element Analysis (FEA) Approach
- New Non-Linear Rigid and Flexible Body Dynamics (ADAMS) Approach
- Integrate ADAMS non-linear model with control system algorithms
Turret Configuration 33 Round Burst
Correlation Parameters

- Three key elements are compared in the direction of large MPI shift
 - Targeting Point of Impact (PI) comparison (Hardstand and Turret)
 - muzzle pitch angle
 - muzzle translational velocity effects
 - Barrel bending shape (Hardstand)
 - Interface loads (Hardstand)

Muzzle Pitch Angle

Muzzle Vertical Displacement
derivative is Muzzle Vertical Velocity
Small Deflections (No spinning barrel cluster)

- Linear system
 - Linear recoil adapter
 - No gaps
 - Fixed boundary conditions at motor

- Fixed temperature
- Mass of all components match weight reports or measurements
- P-T curve applied at barrel breech
- Turret is modeled as a lumped mass spring system using stiffness values from test
Tests Performed in Support of Correlation

- Gun in Hardstand and Turret Configurations
 - Modal Testing
 - Fire Testing of Static (non-rotating) Single Shots for muzzle angle and barrel shape measurements
 - Burst Fire Testing
- Turret Stiffness Measurements
Hardstand Correlation for Normalized Predicted Impact Point

Comparison of Normalized Predicted Impact Point
Due to Muzzle Angle and Lateral Velocity

- FEA results follow shape of test measurements
- Key Metric is Slope
- Projectile exit occurs within +/- .05 msec of 0 on the X axis
- Small differences in frequency between FE model and actual hardware make a significant difference in predicted target
Hardstand Barrel Deflection Correlation

- Predicted shape is similar to measured shape
Modal Correlation in Turret Configuration
1st Elevation and Azimuth Modes

- Close comparison
- Most predictions up to 200 Hz within 7%
High Frequency Barrel Bending Mode

- Barrel Deflected Shape at Projectile Exit
- Most Significant Barrel Bending Mode

This mode is excited by high frequency pitching/yawing excitation due to:
- Off center firing impulse which contains high frequency content
- Muzzle axial fixity (firing barrel recoil imparts moment at muzzle)
Correlation of Predicted Impact Point in Turret Configuration

- Most significant barrel bending mode is evident
- FEA results follow shape of test data
- Projectile exit occurs within +/- .05 msec of 0 on the X axis.
Non-linear ADAMS Model: Firing Animation

- Non-linear recoil adapter
- Spinning barrel cluster
- Flexible barrel cluster and housing
- Does not include modeling of friction or clearances

Barrel deflection is highly exaggerated
Non-linear ADAMS Model: Barrel X-Y Plot

- Traces position of top barrel during spinning (counter clockwise)
- (0,0) center of muzzle cluster before gravity
- Exhibits deflection from gravity
- Exhibits barrel deflection when each barrel fires

Firing Barrel Muzzle Swept Motion

Response of Brl 1 to Brl 2 firing
Response of Brl 1 to Brl 3 firing
Start of burst
End of burst

VERTICAL MOTION
LATERAL MOTION
Shape of muzzle angle prediction is similar to test data
High frequency components missing
Analytic Modeling

- Most Comprehensive and Successful Gun and Turret Correlation to Date
 - Correlation of linear FEM of gun in Hardstand and Turret configurations (traditional method)
 - Correlation of non-linear ADAMS model of gun in Turret configuration (New Approach)
- Both FEA and ADAMS models are excellent tools for design trade studies
- ADAMS Non-linear model advances state of the art analysis techniques for:
 - Greater fidelity of interface load calculations
 - Spinning stability evaluation including gravity effects
 - System failure mode evaluation