The Promise Of Energetic TPE Gun Propellants – From Notebook To Full Scale Verification

Prepared For:

NDIA 37th Annual Gun And Ammunition Symposium
Panama City, Florida
April 15-18, 2002

P. Braithwaite, G. Dixon, M. Rose, and R. Wardle
Acknowledgements

• Advances in these new propellants are the results of cooperative efforts with many organizations including:
 • ARL
 • TACOM-ARDEC
 • DTRA
 • NSWC/IH
 • ONR
 • GD
 • SAIC
 • United Defense
Outline

• Background
• Typical ETPE propellant ingredients
• Propellant processing
• Propellant characterization
• Gun testing
• Summary and conclusions
The potential advantages of TPE gun propellants were seriously discussed in the early 1980’s

- Performance
- Environmental benefits - R3
- Superior burning rate control
 - No plasticizers are used
 - No sensitivity to moisture

Early feasibility studies were successfully performed in coordination with ARL/ONR and others

- Identified areas of critical technical needs
- Developed initial data to verify attractiveness

Recent efforts have demonstrated these propellants on a larger scale
• Early calculations using ETPE propellant formulations indicated they had performance advantages when compared with NC based compositions

• Burning rate tailorability suggested by early low pressure tests indicated these propellants could be used in conventional and layered geometries
Oxetane Thermoplastic Elastomers

Below Tm of Hard Block
- Hard Block Crystalline Spheres
- Soft Block Elastomers

Above Tm of Hard Block
- Hard Block Melts
- Blocks phase separated

Flows and Mixes under Shear
- Hard and Soft Blocks Mix
- Annealing needed for phase separation

- Melting materials behavior critical to energetic processing
 - Need narrow transition from hard to processible
 - M.p. too low and won't survive environment (<65°C)
 - M.p. too high and energetic solids can't be processed safely (>90°C)
 - Dynamic viscosity data show attractiveness of crystalline hard block oxetane TPE (green line)
- Novel TPEs allow continuous processing and recycling
 - Production scrap can be well below 1 percent
- TPE nature allows unusual geometries
 - Better energy management maximizes performance
Thiokol Propulsion

TPE’s Offer Formulation Flexibility

![Chemical Formulas]

BAMO/NMMO

![Chemical Structure Image]

BAMO/BAMO-AMMO

![Chemical Structure Image]

BAMO/AMMO

![Chemical Structure Image]

BEMO/AMMO

![Chemical Structure Image]
New Energetic Solids

• Energetic solids provide additional burning rate and energy tailoring capability

 • Burning rates at 40 kpsi from less than 4 in/sec to over 15 in/sec
 • Impetus levels above 1350 J/g
Twin Screw Extrusion

- Twin screw extrusion has been found to be the best way to mix and extrude pilot scale lots of ETPE based propellants
- No solvents are required during mixing and extrusion
- Multiple formulations have been extruded into a wide range of geometries
Multiple Geometries Have Been Successfully Manufactured
SEM Evaluation

• Careful examination indicates excellent adhesion between solid ingredients and ETPE
Gun Testing

- ETPE propellants have been tested in multiple gun systems
 - 30 mm
 - 35 mm
 - 40 mm
 - 60 mm
 - 120 mm
 - 5-inch
 - 155 mm
120 mm Firings

- ETPE propellants have been tested in 120 mm gun systems using advanced geometries

- Results were great!!!
Summary

- ETPE propellants have matured significantly during the past several years
 - Formulation
 - Processing
 - Testing and characterization
 - Quality control
 - Recycle and reclamation
 - Grain design

- Multiple gun test firings unequivocally demonstrated the performance potential of these promising new propellants